【題目】如圖,兩個正方形 所在平面互相垂直,設(shè) 分別是 的中點,那么

; ② 平面 ;③ ;④ 異面,其中假命題的個數(shù)為( )
A.4
B.3
C.2
D.1

【答案】D
【解析】∵兩個正方形ABCD和ADEF所在平面互相垂直,M、N分別是BD和AE的中點,

取AD的中點G,連接MG,NG,易得AD⊥平面MNG,進而得到AD⊥MN,故①正確;

連接AC,CE,根據(jù)三角形中位線定理,可得MN∥CE,由線面平行的判定定理,可得②MN∥面CDE及③MN∥CE正確,④MN、CE錯誤;

∴其中假命題的個數(shù)為:1

所以答案是:D.

【考點精析】通過靈活運用空間中直線與直線之間的位置關(guān)系和空間中直線與平面之間的位置關(guān)系,掌握相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點;直線在平面內(nèi)—有無數(shù)個公共點;直線與平面相交—有且只有一個公共點;直線在平面平行—沒有公共點即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各對直線不互相垂直的是( )
A.l1的傾斜角為120°,l2過點P(1,0),Q(4, )
B.l1的斜率為- ,l2過點P(1,1),Q
C.l1的傾斜角為30°,l2過點P(3, ),Q(4,2 )
D.l1過點M(1,0),N(4,-5),l2過點P(-6,0),Q(-1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位決定建造一批簡易房(房型為長方體狀,房高2.5米),前后墻用2.5米高的彩色鋼板,兩側(cè)用2.5米高的復(fù)合鋼板,兩種鋼板的價格都用長度來計算(即:鋼板的高均為2.5米,用鋼板的長度乘以單價就是這塊鋼板的價格),每米單價:彩色鋼板為450元,復(fù)合鋼板為200元.房頂用其它材料建造,每平方米材料費為200元.每套房材料費控制在32000元以內(nèi).
(1)設(shè)房前面墻的長為x,兩側(cè)墻的長為y,所用材料費為p,試用x,y表示p;
(2)在材料費的控制下簡易房面積S的最大值是多少?并指出前面墻的長度x應(yīng)為多少米時S最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖為某校語言類專業(yè)N名畢業(yè)生的綜合測評成績(百分制)分布直方圖,已知80~90分數(shù)段的學(xué)員數(shù)為21人. (Ⅰ)求該專業(yè)畢業(yè)總?cè)藬?shù)N和90~95分數(shù)段內(nèi)的人數(shù)n;
(Ⅱ)現(xiàn)欲將90~95分數(shù)段內(nèi)的n名人分配到幾所學(xué)校,從中安排2人到甲學(xué)校去,若n人中僅有兩名男生,求安排結(jié)果至少有一名男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為R的函數(shù) 是奇函數(shù).
(1)求a,b的值;
(2)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列 的前 項和為 ,且 ,數(shù)列 為等差數(shù)列,且 .
(1)求 ;
(2)求數(shù)列 的前 項和 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+bx2﹣3x在x=±1處取得極值
(1)求函數(shù)f(x)的解析式;
(2)求證:對于區(qū)間[﹣1,1]上任意兩個自變量的值x1 , x2 , 都有|f(x1)﹣f(x2)|≤4;
(3)若過點A(1,m)(m≠﹣2)可作曲線y=f(x)的三條切線,求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=lnx+ x2
(1)求曲線f(x)在x=1處的切線方程;
(2)設(shè)P為曲線f(x)上的點,求曲線C在點P處切線的斜率的最小值及傾斜角α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體ABCD-A1B1C1D1中,點M是A1D1的中點,點N是CD的中點,用反證法證明直線BM與直線A1N是兩條異面直線.

查看答案和解析>>

同步練習(xí)冊答案