17.拋物線C1:y2=4x的焦點為F,點P為拋物線上一點,且|PF|=2,雙曲線C2:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的漸近線恰好過P點,則雙曲線C2的離心率為$\sqrt{5}$.

分析 利用拋物線的定義求出P的坐標,根據(jù)雙曲線C2:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的漸近線恰好過P點,可得$\frac{a}$=2,確定a,c的關系,即可求出雙曲線C2的離心率.

解答 解:拋物線C1:y2=4x的焦點為F(1,0).
∵點P為拋物線上一點,且|PF|=2,
∴P(1,±2),
∵雙曲線C2:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的漸近線恰好過P點,
∴$\frac{a}$=2,
∴b=2a,
∴c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{5}$a,
∴e=$\frac{c}{a}$=$\sqrt{5}$.
故答案為:$\sqrt{5}$.

點評 本題考查雙曲線C2的離心率,考查拋物線的方程與性質,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.在等差數(shù)列{an}中,若a2+a4+a5+a6+a8=25,則a2+a8=(  )
A.8B.10C.12D.15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知隨機變量X服從正態(tài)分布N(0,σ2),且P(X>-2)=0.9,則P(0≤x≤2)=(  )
A.0.1B.0.6C.0.5D.0.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.如圖,類比三角形中位線定理“如果EF是三角形的中位線,則EF$\underset{∥}{=}$$\frac{1}{2}$AB.”,在空間四面體(三棱錐)P-ABC中,“如果GEF是中截面,則截面GEF∥截面ABC且截面GEF1的面積等于于截面ABC的面積的$\frac{1}{4}$”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知x,y滿足x+y=1(x>0,y>0),則$\frac{1}{x}+\frac{2}{y}$的最小值是(  )
A.3B.2C.$3-2\sqrt{2}$D.$3+2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f(x)=1+x+$\sqrt{1+10x-3{x^2}}$,若存在兩個不相等的正整數(shù)a,b,滿足f(a)=f(b),則a+b等于( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知四棱錐P-ABCD的底面ABCD是矩形,側面PAD是等邊三角形,E為棱PD的中點
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)若側面PAD⊥底面ABCD,PB⊥AC,求二面角B-AC-E的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,矩形ABCD中,AB=3,AD=4,M,N分別為線段BC,CD上的點,且滿足$\frac{1}{{C{M^2}}}+\frac{1}{{C{N^2}}}=1$,若$\overrightarrow{AC}=x\overrightarrow{AM}+y\overrightarrow{AN}$,則x+y的最小值為$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,在長方體ABCD-A1B1C1D1中,AA1=AD=1,E為CD中點.
(Ⅰ)求證:C1D∥平面AB1E;
(Ⅱ)求證:BC1⊥B1E;
(Ⅲ) 若AB=$\sqrt{2}$,求二面角E-AB1-B的正切值.

查看答案和解析>>

同步練習冊答案