12.已知x,y滿足x+y=1(x>0,y>0),則$\frac{1}{x}+\frac{2}{y}$的最小值是( 。
A.3B.2C.$3-2\sqrt{2}$D.$3+2\sqrt{2}$

分析 運(yùn)用1的代換,化簡(jiǎn),利用基本不等式,即可得出答案,但應(yīng)當(dāng)注意取等的條件.

解答 解:∵x+y=1(x>0,y>0),
∴$\frac{1}{x}+\frac{2}{y}$=($\frac{1}{x}+\frac{2}{y}$)(x+y)=1+$\frac{y}{x}$+$\frac{2x}{y}$+2≥3+2$\sqrt{\frac{y}{x}×\frac{2x}{y}}$=3+2$\sqrt{2}$,
當(dāng)且僅當(dāng)y=$\sqrt{2}$x時(shí),取得等號(hào),
∴$\frac{1}{x}+\frac{2}{y}$的最小值為3+2$\sqrt{2}$,
故選:D.

點(diǎn)評(píng) 本題考查基本不等式的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)全集為U=R,集合A={x|(x+3)(4-x)≤0},B={x|log2(x+2)<3}.
(1)求A∩∁UB;
(2)已知C={x|2a<x<a+1},若C⊆A∪B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.2個(gè)人分別從3部電影中選擇一部電影購買電影票,不同的購買方式共有( 。
A.6B.9C.8D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.首屆亞洲通航展于2015年10月28日在珠海盛大開幕,航展吸引了十多萬名專業(yè)游客,三十多萬大眾游客,航展餐飲中心為了了解游客的飲食習(xí)慣,在參與航展的游客中進(jìn)行抽樣調(diào)查,調(diào)查結(jié)果如表所示
(1)根據(jù)表中數(shù)據(jù),問是否有95%的把握認(rèn)為“廣東游客和非廣東游客在選用甜品的飲食習(xí)慣方面有差異”;
(2)已知在被調(diào)查的廣東游客中有5人是珠海游客,其中2人喜歡甜品,現(xiàn)在從這5名珠海游客中隨機(jī)抽取3人,求至多有1人喜歡甜品的概率?
喜歡甜品不喜歡甜品總計(jì)
廣東游客602080
非廣東游客101020
總計(jì)7030100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)m∈R,復(fù)數(shù)(m2-5m+6)+(m2-3m)i是純虛數(shù).
(1)求m的值;
(2)若-2+mi是方程x2+px+q=0的一個(gè)根,求實(shí)數(shù)p,q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.拋物線C1:y2=4x的焦點(diǎn)為F,點(diǎn)P為拋物線上一點(diǎn),且|PF|=2,雙曲線C2:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的漸近線恰好過P點(diǎn),則雙曲線C2的離心率為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知焦點(diǎn)在x軸上的橢圓的離心率是$\frac{{\sqrt{2}}}{2}$,且過點(diǎn)S(-1,$\frac{{\sqrt{2}}}{2}$)
(1)求該橢圓方程
(2)若傾斜角是45°的直線l和橢圓交于P、Q兩點(diǎn),M是直線l與x軸的交點(diǎn),且有3$\overrightarrow{PM}=\overrightarrow{MQ}$,求直線l方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.4+$\frac{3π}{2}$B.4+3πC.4+πD.4+$\sqrt{3}$+$\frac{3π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,角A,B,C所對(duì)的邊a,b,c滿足$\frac{cosB}{cosC}$+$\frac{c}$=$\frac{2a}{c}$.
(1)求角C的大;
(2)若邊長(zhǎng)c=$\sqrt{3}$,求a+2b的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案