【題目】如圖,四棱錐底面,,,的中點

(1)求的長;

(2)求二面角的正弦值

【答案】(1);(2).

【解析】

試題分析:(1)連于點,等腰三角形中利用三線合一證出,因此分別以所在直線分別為軸、建立空間直角坐標系如圖所示.結(jié)合題意算出、

各點的坐標,設(shè),根據(jù)邊的中點且,算出,從而得到,可得的長;(2)由(1)的計算,得,.利用垂直向量數(shù)量積為零的方法建立方程組,解出分別為平面、平面的法向量,利用空間向量的夾角公式算出、夾角的余弦,結(jié)合同角三角函數(shù)的平方關(guān)系即可算出二面角的正弦值.

試題解析:(1)如圖,連接于點,

平分角,,

為坐標原點,、所在直線分別為軸、軸,建立空間直角坐標系

,而,可得,

,

可得,,

由于底面,可設(shè),

邊的中點,,由此可得,

,且

,解得(舍負),

因此,,可得的長為

(2)由(1)知,,

設(shè)平面的法向量為,平面的法向量為

,且,,取,得,

同理,由,解出

向量的夾角余弦值為,

因此,二面角的正弦值等于

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若,判斷函數(shù)的單調(diào)性;

(2)若函數(shù)在定義域內(nèi)單調(diào)遞減,求實數(shù)的取值范圍;

(3)當時,關(guān)于的方程上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

)當a=﹣2時,求函數(shù)f(x)的單調(diào)區(qū)間;

)若g(x)= +1,+∞)上是單調(diào)函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠每日生產(chǎn)某種產(chǎn)品噸,當日生產(chǎn)的產(chǎn)品當日銷售完畢,產(chǎn)品價格隨產(chǎn)品產(chǎn)量而變化,當時,每日的銷售額(單位:萬元)與當日的產(chǎn)量滿足,當日產(chǎn)量超過噸時,銷售額只能保持日產(chǎn)量噸時的狀況.已知日產(chǎn)量為噸時銷售額為萬元,日產(chǎn)量為噸時銷售額為萬元.

1)把每日銷售額表示為日產(chǎn)量的函數(shù);

2)若每日的生產(chǎn)成本(單位:萬元),當日產(chǎn)量為多少噸時,每日的利潤可以達到最大?并求出最大值.(注:計算時取

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)在點處的切線方程;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若存在,使得是自然對數(shù)的底數(shù)),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象如圖所示.

(Ⅰ)求的值;

(Ⅱ)若函數(shù)處的切線方程為,求函數(shù)的解析式;

(Ⅲ)在(Ⅱ)的條件下,函數(shù)的圖象有三個不同的交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

I)求證:恒成立;

II)若存在實數(shù),使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐,底面側(cè)面分別為的中點,且,.

I)證明:平面;

II)設(shè),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)).

1求曲線的普通方程;

2經(jīng)過點平面直角坐標系中點作直線交曲線兩點,若恰好為線段的三等分點,求直線的斜率.

查看答案和解析>>

同步練習冊答案