【題目】如圖,在三棱柱中,為正三角形,平面平面,,為的中點(diǎn),.
(1)求證:;
(2)求二面角的平面角的余弦值.
【答案】(1)見解析(2)
【解析】
(1)利用面面垂直的性質(zhì)定理可得平面,由線面垂直的性質(zhì)可得線線垂直;
(2)故以為坐標(biāo)原點(diǎn),分別以的方向?yàn)?/span>軸建立空間直角坐標(biāo)系,
分別求得平面與平面的法向量,利用空間向量求二面角的余弦值.
(1)證明:∵,為的中點(diǎn),
∴,
∵平面平面,平面平面,平面,
∵平面,
∴;
(2)連接,
∵,,
∴為正三角形,
∵為的中點(diǎn),
∴,
∵平面平面,平面平面,平面,
∴平面,
故以為坐標(biāo)原點(diǎn),分別以的方向?yàn)?/span>軸建立空間直角坐標(biāo)系,如圖所示,
則,,,,,
設(shè)為平面的法向量,
則,
即,可取,則,
由(1)知為平面的法向量,
于是,
∴二面角的平面角的余弦值為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正四棱錐的底邊長為2,側(cè)棱長為,為上一點(diǎn),且,點(diǎn),分別為,上的點(diǎn),且.
(1)證明:平面平面;
(2)求銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某種細(xì)菌的適宜生長溫度為12℃~27℃,為了研究該種細(xì)菌的繁殖數(shù)量(單位:個)隨溫度(單位:℃)變化的規(guī)律,收集數(shù)據(jù)如下:
溫度/℃ | 14 | 16 | 18 | 20 | 22 | 24 | 26 |
繁殖數(shù)量/個 | 25 | 30 | 38 | 50 | 66 | 120 | 218 |
對數(shù)據(jù)進(jìn)行初步處理后,得到了一些統(tǒng)計(jì)量的值,如表所示:
20 | 78 | 4.1 | 112 | 3.8 | 1590 | 20.5 |
其中,.
(1)請繪出關(guān)于的散點(diǎn)圖,并根據(jù)散點(diǎn)圖判斷與哪一個更適合作為該種細(xì)菌的繁殖數(shù)量關(guān)于溫度的回歸方程類型(給出判斷即可,不必說明理由);
(2)根據(jù)(1)的判斷結(jié)果及表格數(shù)據(jù),建立關(guān)于的回歸方程(結(jié)果精確到0.1);
(3)當(dāng)溫度為27℃時(shí),該種細(xì)菌的繁殖數(shù)量的預(yù)報(bào)值為多少?
參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二成估計(jì)分別為,,參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣a|+|x﹣a+1|.
(1)當(dāng)a=4時(shí),求解不等式f(x)≥8;
(2)已知關(guān)于x的不等式f(x)在R上恒成立,求參數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體中,平面,,四邊形為菱形,,點(diǎn),分別在棱,上.
(1)若平面,設(shè),求的值;
(2)若,,直線與平面所成角的正切值為,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四川省雙流中學(xué)是一所國家級示范高中,具有悠久的辦學(xué)歷史、豐富的辦學(xué)經(jīng)驗(yàn).近年來,雙中共為國內(nèi)外高校輸送合格新生20000余名,其中為清華、北大、復(fù)旦、人大等一流學(xué)府輸送新生1800余名,上本科線人數(shù)年年超過千人,培養(yǎng)出省、市、縣高考冠軍17名,位居成都市同類學(xué)校前茅.該校高三某班有50名學(xué)生參加了今年成都市“一診”考試,其中英語成績服從正態(tài)分布,數(shù)學(xué)成績的頻率分布直方圖如下:
(1)如果成績140分及以上為單科特優(yōu),則該班本次考試中英語、數(shù)學(xué)單科特優(yōu)大約各多少人?
(2)試問該班本次考試中英語和數(shù)學(xué)平均成績哪個較高,并說明理由;
(3)如果英語和數(shù)學(xué)兩科都為單科特優(yōu)共有5人,把(1)中的近似數(shù)作為真實(shí)值,從(1)中這些同學(xué)中隨機(jī)抽取3人,設(shè)三人中英語和數(shù)學(xué)雙科特優(yōu)的有人,求的分布列和數(shù)學(xué)期望.
參考公式及數(shù)據(jù):
則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓與x軸負(fù)半軸交于,離心率.
(1)求橢圓C的方程;
(2)設(shè)直線與橢圓C交于兩點(diǎn),連接AM,AN并延長交直線x=4于兩點(diǎn),若,直線MN是否恒過定點(diǎn),如果是,請求出定點(diǎn)坐標(biāo),如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖1是由矩形ADEB,Rt△ABC和菱形BFGC組成的一個平面圖形,其中AB=1,BE=BF=2,∠FBC=60°,將其沿AB,BC折起使得BE與BF重合,連結(jié)DG,如圖2.
(1)證明:圖2中的A,C,G,D四點(diǎn)共面,且平面ABC⊥平面BCGE;
(2)求圖2中的二面角BCGA的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)國家號召,促進(jìn)垃圾分類,某校組織了高三年級學(xué)生參與了“垃圾分類,從我做起”的知識問卷作答,隨機(jī)抽出男女各20名同學(xué)的問卷進(jìn)行打分,作出如圖所示的莖葉圖,成績大于70分的為“合格”.
男 | 女 | 總計(jì) | |
合格 | |||
不合格 | |||
總計(jì) |
(1)由以上數(shù)據(jù)繪制成2×2聯(lián)表,是否有95%以上的把握認(rèn)為“性別”與“問卷結(jié)果”有關(guān)?
(2)從上述樣本中,成績在60分以下(不含60分)的男女學(xué)生問卷中任意選2個,求這2個學(xué)生性別不同的概率.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com