【題目】為了響應(yīng)國家號召,促進垃圾分類,某校組織了高三年級學(xué)生參與了“垃圾分類,從我做起”的知識問卷作答,隨機抽出男女各20名同學(xué)的問卷進行打分,作出如圖所示的莖葉圖,成績大于70分的為“合格”.

總計

合格

不合格

總計

1)由以上數(shù)據(jù)繪制成2×2聯(lián)表,是否有95%以上的把握認(rèn)為“性別”與“問卷結(jié)果”有關(guān)?

2)從上述樣本中,成績在60分以下(不含60分)的男女學(xué)生問卷中任意選2個,求這2個學(xué)生性別不同的概率.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

【答案】1)列聯(lián)表見解析,有;(2.

【解析】

1)根據(jù)題意填寫列聯(lián)表,計算即可作出判斷;

2)利用列舉法以及古典概型概率公式計算即可.

1)根據(jù)莖葉圖可得

總計

合格

10

16

26

不合格

10

4

14

總計

20

20

40

知有95%以上的把握認(rèn)為“性別”與“問卷結(jié)果”有關(guān).

2)從莖葉圖可知,成績在60分以下(不含60分)的男女學(xué)生人數(shù)分別是4人和2人,分別用,,表示

基本事件為:,,,,,,,,,共有15

其中性別不同的基本事件有,,,,,8

所求概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,為正三角形,平面平面,的中點,

1)求證:;

2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)滿足=1,則等于(

A.-B.C.-D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面向量,滿足:||2,||1

1)若(2)=1,求的值;

2)設(shè)向量,的夾角為θ.若存在tR,使得,求cosθ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“一帶一路”是“絲綢之路經(jīng)濟帶”和“21世紀(jì)海上絲綢之路”的簡稱,旨在積極發(fā)展我國與沿線國家經(jīng)濟合作關(guān)系,共同打造政治互信、經(jīng)濟融合、文化包容的命運共同體.2015年以來,“一帶一路”建設(shè)成果顯著.如圖是20152019年,我國對“一帶一路”沿線國家進出口情況統(tǒng)計圖,下列描述錯誤的是( )

A.這五年,出口總額之和比進口總額之和

B.這五年,2015年出口額最少

C.這五年,2019年進口增速最快

D.這五年,出口增速前四年逐年下降

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別過橢圓左、右焦點的動直線相交于,與橢圓分別交于不同四點,直線的斜率滿足.已知當(dāng)軸重合時,,.

Ⅰ)求橢圓的方程;

Ⅱ)是否存在定點,使得為定值?若存在,求出點坐標(biāo)并求出此定值;若不存在,說明理由.

【答案】(Ⅰ);,.

【解析】試題分析:(1)當(dāng)軸重合時,垂直于軸,得,,從而得橢圓的方程;(2)由題目分析如果存兩定點,則點的軌跡是橢圓或者雙曲線 ,所以把坐標(biāo)化,可得點的軌跡是橢圓,從而求得定點和點.

試題解析:當(dāng)軸重合時,, ,所以垂直于軸,得,,, ,橢圓的方程為.

焦點坐標(biāo)分別為, 當(dāng)直線斜率不存在時,點坐標(biāo)為;

當(dāng)直線斜率存在時,設(shè)斜率分別為, 設(shè), 得:

, 所以:, 則:

. 同理:, 因為

, 所以, , 由題意知, 所以

, 設(shè),則,即,由當(dāng)直線斜率不存在時,點坐標(biāo)為也滿足此方程,所以點在橢圓.存在點和點,使得為定值,定值為.

考點:圓錐曲線的定義,性質(zhì),方程.

【方法點晴】本題是對圓錐曲線的綜合應(yīng)用進行考查,第一問通過兩個特殊位置,得到基本量,得,,從而得橢圓的方程,第二問由題目分析如果存兩定點,則點的軌跡是橢圓或者雙曲線 ,本題的關(guān)鍵是從這個角度出發(fā),把坐標(biāo)化,求得點的軌跡方程是橢圓,從而求得存在兩定點和點.

型】解答
結(jié)束】
21

【題目】已知,.

(Ⅰ)若,求的極值;

(Ⅱ)若函數(shù)的兩個零點為,記,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若有兩個不同的極值點,求實數(shù)的取值范圍;

2)在(1)的條件下,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù),對任意,都有成立,若函數(shù)的圖象關(guān)于直線對稱,則

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】虛擬現(xiàn)實()技術(shù)被認(rèn)為是經(jīng)濟發(fā)展的新增長點,某地區(qū)引進技術(shù)后,市場收入(包含軟件收入和硬件收入)逐年翻一番,據(jù)統(tǒng)計該地區(qū)市場收入情況如圖所示,則下列說法錯誤的是( )

A.該地區(qū)2019年的市場總收入是2017年的4

B.該地區(qū)2019年的硬件收入比2017年和2018年的硬件收入總和還要多

C.該地區(qū)2019年的軟件收入是2018年的軟件收入的3

D.該地區(qū)2019年的軟件收入是2017年的軟件收入的6

查看答案和解析>>

同步練習(xí)冊答案