【題目】四川省雙流中學(xué)是一所國家級示范高中,具有悠久的辦學(xué)歷史、豐富的辦學(xué)經(jīng)驗(yàn).近年來,雙中共為國內(nèi)外高校輸送合格新生20000余名,其中為清華、北大、復(fù)旦、人大等一流學(xué)府輸送新生1800余名,上本科線人數(shù)年年超過千人,培養(yǎng)出省、市、縣高考冠軍17名,位居成都市同類學(xué)校前茅.該校高三某班有50名學(xué)生參加了今年成都市“一診”考試,其中英語成績服從正態(tài)分布,數(shù)學(xué)成績的頻率分布直方圖如下:
(1)如果成績140分及以上為單科特優(yōu),則該班本次考試中英語、數(shù)學(xué)單科特優(yōu)大約各多少人?
(2)試問該班本次考試中英語和數(shù)學(xué)平均成績哪個(gè)較高,并說明理由;
(3)如果英語和數(shù)學(xué)兩科都為單科特優(yōu)共有5人,把(1)中的近似數(shù)作為真實(shí)值,從(1)中這些同學(xué)中隨機(jī)抽取3人,設(shè)三人中英語和數(shù)學(xué)雙科特優(yōu)的有人,求的分布列和數(shù)學(xué)期望.
參考公式及數(shù)據(jù):
則
【答案】(1)英語有人,數(shù)學(xué)有人;(2)數(shù)學(xué),理由見解析;(3)分布列見解析,
【解析】
(1)由英語成績服從正態(tài)分布,求出英語成績?yōu)閱慰铺貎?yōu)的概率為,由此能求出英語成績?yōu)閱慰铺貎?yōu)的同學(xué)的人數(shù),由圖形先求出,由此能求出數(shù)學(xué)成績特優(yōu)的同學(xué)的人數(shù);
(2)英語的平均價(jià)成績?yōu)?/span>120人,數(shù)學(xué)的平均成績?yōu)?/span>127分,從而數(shù)學(xué)的平均成績更高;
(3)英語和數(shù)學(xué)雙科特優(yōu)的有5人,單科特優(yōu)的有8人,得到的取值為,分別求出相應(yīng)的概率,由此求得隨機(jī)變量的分布列和數(shù)學(xué)期望.
(1)由題意,英語成績服從正態(tài)分布,
所以英語成績?yōu)閱慰铺貎?yōu)的概率為,
所以英語成績?yōu)閱慰铺貎?yōu)的同學(xué)約有人,
因?yàn)?/span>,解得
數(shù)學(xué)成績特別優(yōu)秀的同學(xué)約有人.
(2)英語的平均成績?yōu)?/span>120分,
數(shù)學(xué)的平均成績?yōu)?/span>分,
因?yàn)?/span>,所以數(shù)學(xué)的平均成績更高.
(3)英語和數(shù)學(xué)雙科特優(yōu)的有5人,單科特優(yōu)的有8人,
從中抽取3人,隨機(jī)變量可能取值有0,1,2,3,
;;
;
故的分布列為:
0 | 1 | 2 | 3 | |
所以的數(shù)學(xué)期望為(人).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“二進(jìn)制”來源于我國古代的《易經(jīng)》,該書中有兩類最基本的符號:“—”和“——”,其中“—”在二進(jìn)制中記作“1”,“——”在二進(jìn)制中記作“0”,例如二進(jìn)制數(shù)化為十進(jìn)制的計(jì)算如下:.若從兩類符號中任取2個(gè)符號進(jìn)行排列,則得到的二進(jìn)制數(shù)所對應(yīng)的十進(jìn)制數(shù)大于2的概率為( )
A.0B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).
(1)求和的直角坐標(biāo)方程;
(2)若曲線截直線所得線段的中點(diǎn)坐標(biāo)為,求的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新疆小南瓜以沙甜聞名全國,小田計(jì)劃從新疆運(yùn)輸小南瓜去上海,隨機(jī)從某瓜農(nóng)的瓜地里挑選了100個(gè),其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示,將頻率視為概率.
(1)請根據(jù)頻率分布直方圖估計(jì)該瓜農(nóng)的小南瓜的平均質(zhì)量;
(2)已知瓜地里還有2萬個(gè)小南瓜已經(jīng)成熟,可以采摘,小田想全部購買,可是瓜農(nóng)要求超過400克的小南瓜以5元一個(gè)的價(jià)格出售,其他的以3元一個(gè)的價(jià)格出售.將頻率視為概率,若新疆到上海往返的運(yùn)費(fèi)約2000元,請問這2萬個(gè)小南瓜在上海以每斤(500克)多少元定價(jià)才能保證小田的利潤不少于5000元?(結(jié)果保留一位小數(shù))
(3)某天王阿姨在上海某超市的蔬菜柜臺上看到小田從新疆采摘的新疆小南瓜,已知柜臺上有若干個(gè),若質(zhì)量超過500克的小南瓜為“優(yōu)質(zhì)品”,王阿姨隨機(jī)購買了20個(gè)小南瓜,求王阿姨購買的小南瓜中“優(yōu)質(zhì)品”個(gè)數(shù)的期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校名學(xué)生參加軍事冬令營活動(dòng),活動(dòng)期間各自扮演一名角色進(jìn)行分組游戲,角色按級別從小到大共種,分別為士兵、排長、連長、營長、團(tuán)長、旅長、師長、軍長和司令.游戲分組有兩種方式,可以人一組或者人一組.如果人一組,則必須角色相同;如果人一組,則人角色相同或者人為級別連續(xù)的個(gè)不同角色.已知這名學(xué)生扮演的角色有名士兵和名司令,其余角色各人,現(xiàn)在新加入名學(xué)生,將這名學(xué)生分成組進(jìn)行游戲,則新加入的學(xué)生可以扮演的角色的種數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)解關(guān)于的不等式:;
(2)當(dāng)時(shí),過點(diǎn)是否存在函數(shù)圖象的切線?若存在,有多少條?若不存在,說明理由;
(3)若是使恒成立的最小值,試比較與的大。).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的短軸長為,離心率,其右焦點(diǎn)為.
(1)求橢圓的方程;
(2)過作夾角為的兩條直線分別交橢圓于和,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別過橢圓左、右焦點(diǎn)的動(dòng)直線相交于點(diǎn),與橢圓分別交于與不同四點(diǎn),直線的斜率滿足.已知當(dāng)與軸重合時(shí),,.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在定點(diǎn),使得為定值?若存在,求出點(diǎn)坐標(biāo)并求出此定值;若不存在,說明理由.
【答案】(Ⅰ);(Ⅱ),和.
【解析】試題分析:(1)當(dāng)與軸重合時(shí),垂直于軸,得,得,從而得橢圓的方程;(2)由題目分析如果存兩定點(diǎn),則點(diǎn)的軌跡是橢圓或者雙曲線 ,所以把坐標(biāo)化,可得點(diǎn)的軌跡是橢圓,從而求得定點(diǎn)和點(diǎn).
試題解析:當(dāng)與軸重合時(shí),, 即,所以垂直于軸,得,,, 得,橢圓的方程為.
焦點(diǎn)坐標(biāo)分別為, 當(dāng)直線或斜率不存在時(shí),點(diǎn)坐標(biāo)為或;
當(dāng)直線斜率存在時(shí),設(shè)斜率分別為, 設(shè)由, 得:
, 所以:,, 則:
. 同理:, 因?yàn)?/span>
, 所以, 即, 由題意知, 所以
, 設(shè),則,即,由當(dāng)直線或斜率不存在時(shí),點(diǎn)坐標(biāo)為或也滿足此方程,所以點(diǎn)在橢圓上.存在點(diǎn)和點(diǎn),使得為定值,定值為.
考點(diǎn):圓錐曲線的定義,性質(zhì),方程.
【方法點(diǎn)晴】本題是對圓錐曲線的綜合應(yīng)用進(jìn)行考查,第一問通過兩個(gè)特殊位置,得到基本量,,得,,從而得橢圓的方程,第二問由題目分析如果存兩定點(diǎn),則點(diǎn)的軌跡是橢圓或者雙曲線 ,本題的關(guān)鍵是從這個(gè)角度出發(fā),把坐標(biāo)化,求得點(diǎn)的軌跡方程是橢圓,從而求得存在兩定點(diǎn)和點(diǎn).
【題型】解答題
【結(jié)束】
21
【題目】已知,,.
(Ⅰ)若,求的極值;
(Ⅱ)若函數(shù)的兩個(gè)零點(diǎn)為,記,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com