7.雙曲線x2-y2=1的兩條漸近線與拋物線y2=4x交于O,A,B三點(diǎn),O為坐標(biāo)原點(diǎn),則|AB|等于( 。
A.4B.6C.8D.16

分析 求出雙曲線的漸近線方程,代入拋物線的方程,求得交點(diǎn)A,B的坐標(biāo),可得AB的長(zhǎng).

解答 解:雙曲線x2-y2=1的兩條漸近線方程為y=±x,
代入拋物線的方程y2=4x,可得A(4,4),B(4,-4),
可得|AB|=8.
故選:C.

點(diǎn)評(píng) 本題考查弦長(zhǎng)的求法,考查雙曲線的漸近線方程的運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={x|x2+3x-4≤0},B={x|x=2n+1,n∈Z},則集合A∩B中元素的個(gè)數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知F1,F(xiàn)2為雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1(a>0,b>0)$的左、右焦點(diǎn),過點(diǎn)F2作此雙曲線一條漸近線的垂線,垂足為M,且滿足|$\overrightarrow{M{F}_{1}}$|=3|$\overrightarrow{M{F}_{2}}$|,則此雙曲線的離心率是( 。
A.$\sqrt{2}$B.$\frac{\sqrt{5}}{2}$C.$\sqrt{5}$D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.一條光線沿直線2x-y+2=0照射到y(tǒng)軸后反射,則反射光線所在的直線方程為( 。
A.2x+y-2=0B.2x+y+2=0C.x+2y+2=0D.x+2y-2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某自來水廠的蓄水池存有400噸水,水廠每小時(shí)可向蓄水池中注入60噸,同時(shí)蓄水池又向居民小區(qū)不間斷供水,t小時(shí)內(nèi)供水總量為$120\sqrt{6t}$噸(0≤t≤24)
(1)設(shè)t小時(shí)后蓄水池中的存水量為y噸,寫出y關(guān)于t的函數(shù)表達(dá)式;
(2)求從供水開始到第幾小時(shí),蓄水池中的存水量最少?最少水量是多少噸?
(3)若蓄水池中水量少于80噸時(shí),就會(huì)出現(xiàn)供水緊張現(xiàn)象,請(qǐng)問:在一天的24小時(shí)內(nèi),有幾小時(shí)出現(xiàn)供水緊張現(xiàn)象?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知點(diǎn)F是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn),點(diǎn)E是該雙曲線的右頂點(diǎn),過F且垂直于x軸的直線與雙曲線交于A、B兩點(diǎn),若△ABE是鈍角三角形,則該雙曲線的離心率e的取值范圍是(  )
A.(1,+∞)B.(1,2)C.(1,1+$\sqrt{2}$)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.對(duì)定義在區(qū)間D上的函數(shù)f(x)和g(x),如果對(duì)任意x∈D,都有|f(x)-g(x)|≤1成立,那么稱函數(shù)f(x)在區(qū)間D上可被g(x)替代,D稱為“替代區(qū)間”.給出以下命題:
①f(x)=x2+1在區(qū)間(-∞,+∞)上可被g(x)=x2+$\frac{1}{2}$替代;
②f(x)=x可被g(x)=1-$\frac{1}{4x}$替代的一個(gè)“替代區(qū)間”為[$\frac{1}{4}$,$\frac{3}{2}$]
③f(x)=lnx在區(qū)間[1,e]可被g(x)=$\frac{1}{x}$-b替代,則0≤b≤$\frac{1}{e}$
④f(x)=ln(ax2+x)(x∈D1),g(x)=sinx(x∈D2),則存在實(shí)數(shù)a(≠0),使得f(x)在區(qū)間D1∩D2上被g(x)替代.
其中真命題的有①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)F1,F(xiàn)2為雙曲線$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{4}$=1的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上且滿足∠F1PF2=90°,求:
(1)△F1PF2的周長(zhǎng);
(2)△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若點(diǎn)O和點(diǎn)F分別為雙曲線$\frac{{x}^{2}}{3}$-y2=1的中心和左焦點(diǎn),點(diǎn)P為雙曲線右支上的任意一點(diǎn),則$\overrightarrow{OP}$•$\overrightarrow{FP}$的取值范圍為[3+2$\sqrt{3}$,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案