2.某自來水廠的蓄水池存有400噸水,水廠每小時(shí)可向蓄水池中注入60噸,同時(shí)蓄水池又向居民小區(qū)不間斷供水,t小時(shí)內(nèi)供水總量為$120\sqrt{6t}$噸(0≤t≤24)
(1)設(shè)t小時(shí)后蓄水池中的存水量為y噸,寫出y關(guān)于t的函數(shù)表達(dá)式;
(2)求從供水開始到第幾小時(shí),蓄水池中的存水量最少?最少水量是多少噸?
(3)若蓄水池中水量少于80噸時(shí),就會出現(xiàn)供水緊張現(xiàn)象,請問:在一天的24小時(shí)內(nèi),有幾小時(shí)出現(xiàn)供水緊張現(xiàn)象?

分析 (1)t小時(shí)后蓄水池中的水量為y噸,根據(jù)條件建立方程關(guān)系即可.
(2)根據(jù)函數(shù)關(guān)系轉(zhuǎn)化為一元二次函數(shù)形式進(jìn)行求解.
(3)根據(jù)條件建立不等式關(guān)系進(jìn)行求解.

解答 解:(1)設(shè)t小時(shí)后蓄水池中的水量為y噸,
則$y=400+60t-120\sqrt{6t}$(0≤t≤24)
(2)令$\sqrt{6t}=x$,則x2=6t(0≤x≤12)
即y=400+10x2-120x=10(x-6)2+40(0≤x≤12)
∴當(dāng)x=6時(shí),即t=6時(shí),ymin=40
即從供水開始到第6個(gè)小時(shí)時(shí),蓄水池水量最少,最少水量為40噸.
(3)依題意,400+10x2-120x<80,得x2-12x+32<0
解得4<x<8,即$4<\sqrt{6t}<8$,解得$\frac{8}{3}<t<\frac{32}{3}$
由$\frac{32}{3}-\frac{8}{3}=8$,所以每天約有8小時(shí)供水緊張.

點(diǎn)評 本題主要考查函數(shù)的應(yīng)用問題,根據(jù)條件建立方程和函數(shù)關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)M={x|x=a2-b2,a,b∈Z}.求證:
(1)1∈M;
(2)屬于M的兩個(gè)數(shù),其積仍屬于M;
(3)-2∉M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)拋物線x2=2py的焦點(diǎn)與雙曲線$\frac{y^2}{3}-{x^2}=1$的上焦點(diǎn)重合,則p的值為( 。
A.$\sqrt{2}$B.4C.2$\sqrt{2}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在單位圓中,大小為2弧度的圓心角所對弦的長度為2sin1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.經(jīng)過點(diǎn)A(1,1),且與直線l:3x-2y+1=0平行的直線方程為3x-2y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.雙曲線x2-y2=1的兩條漸近線與拋物線y2=4x交于O,A,B三點(diǎn),O為坐標(biāo)原點(diǎn),則|AB|等于( 。
A.4B.6C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)F,作圓x2+y2=a2的切線FM與y軸交于點(diǎn)P(0,b),切圓于點(diǎn)M,則雙曲線的離心率e為$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1和F2,左右頂點(diǎn)分別為A1和A2,過焦點(diǎn)F2與x軸垂直的直線和雙曲線的一個(gè)交點(diǎn)為P,若|$\overrightarrow{P{A}_{1}}$|是|$\overrightarrow{{F}_{1}{F}_{2}}$|和|$\overrightarrow{{A}_{1}{F}_{2}}$|的等比中項(xiàng),則該雙曲線的離心率為( 。
A.$\sqrt{3}$B.$\sqrt{2}$C.$\sqrt{2}$+1D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.雙曲線$\frac{y^2}{3}-\frac{x^2}{9}=1$的實(shí)軸長等于$2\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案