如圖,在四棱錐M-ABCD中,底面ABCD是邊長為2的正方形,側(cè)棱AM的長為3,且AM和AB、AD的夾角都是60°,N是CM的中點,設(shè)
a
=
AB
,
b
=
AD
,
c
=A
M
,試以
a
,
b
c
為基向量表示出向量
BN
,并求BN的長.
考點:點、線、面間的距離計算
專題:空間位置關(guān)系與距離
分析:由已知條件推導(dǎo)出
BN
=
1
2
(
BC
+
BM
)
=-
1
2
a
+
1
2
b
+
1
2
c
.由已知條件知|
a
|=|
b
|=2,|
c
|=3,
a
b
=0,
a
c
=
b
c
=3,由此利用
BN
2
=(-
1
2
a
+
1
2
b
+
1
2
c
2能求出BN的長.
解答: 解:∵N是CM的中點,設(shè)
a
=
AB
,
b
=
AD
,
c
=A
M
,
底面ABCD是邊長為2的正方形,
BN
=
1
2
(
BC
+
BM
)

=
1
2
(
AD
+
BA
+
AM
)

=-
1
2
a
+
1
2
b
+
1
2
c

∵在四棱錐M-ABCD中,底面ABCD是邊長為2的正方形,
側(cè)棱AM的長為3,且AM和AB、AD的夾角都是60°,
∴|
a
|=|
b
|=2,|
c
|=3,
a
b
=0,
a
c
=2×3×cos60°=3,
b
c
=2×3×cos60°=3,
BN
2
=(-
1
2
a
+
1
2
b
+
1
2
c
2
=1+1+
9
4
-
1
2
×3
+
1
2
×3
=
17
4
,
∴|
BN
|=
17
2
,即BN的長為
17
2
點評:本題考查向量的表示和線段長的求法,是中檔題,解題時要認(rèn)真審題,注意等價轉(zhuǎn)化思想的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知單位向量
i
j
,
k
兩兩所成的夾角均為θ(0<θ<π,且θ≠
π
2
),若空間向量
a
滿足
a
=x
i
+y
j
+z
k
(x,y,z∈R),則有序?qū)崝?shù)對(x,y,z)稱為向量
a
在“仿射”坐標(biāo)系Oxyz(O為坐標(biāo)原點)下的“仿射”坐標(biāo),記作
a
=(x,y,z)θ.有下列命題:
①已知
a
=(2,0,-1)θ,
b
=(1,0,2)θ,則
a
b
=0;
②已知
a
=(x,y,0)
π
3
b
=(0,0,z)
π
3
,其中xyz≠0,則當(dāng)且僅當(dāng)x=y時,向量
a
b
的夾角取得最小值;
③已知
a
=(x1,y1,z1θ,
b
=(x2,y2,z2θ,則
a
-
b
=(x1-x2,y1-y2,z1-z2)θ
;
④已知
OA
=(1,0,0)
π
3
,
OB
=(0,1,0)
π
3
,
OC
=(0,0,1)
π
3
,則三棱錐O-ABC體積為V=
2
12

其中真命題有
 
(填寫真命題的所有序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于平面α和兩條不同的直線m,n,下列命題是真命題的是(  )
A、若m⊥α,n⊥α,則m∥n
B、若m∥α,n∥α則m∥n
C、若m⊥α,m⊥n則n∥α
D、若m,n與α所成的角相等,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合U=R,集合A={x|-l≤x≤3},集合B=|x|log2x<2},則A∩B=( 。
A、{x|1≤x≤3}
B、{x|-1≤x≤3}
C、{x|0<x≤3}
D、{x|-1≤x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(m,n),
b
=(cosx,sinx),函數(shù)f(x)=
a
b
-2.
(1)設(shè)m=n=1,x為某三角形的內(nèi)角,求f(x)=-1時x的值;
(2)設(shè)m=4,n=3,當(dāng)函數(shù)f(x)取最大值時,求cos2x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對甲、乙兩名籃球運動員分別在100場比賽中的得分情況進(jìn)行統(tǒng)計,做出甲的得分頻率分布直方圖如圖所示,列出乙的得分統(tǒng)計表如下:
分值[0,10)[10,20)[20,30)[30,40)
場數(shù)10204030
(Ⅰ)估計甲在一場比賽中得分不低于20分的概率;
(Ⅱ)判斷甲、乙兩名運動員哪個成績更穩(wěn)定;(結(jié)論不要求證明)
(Ⅲ)在甲所進(jìn)行的100場比賽中,以每場比賽得分所在區(qū)間中點的橫坐標(biāo)為這場比賽的得分,試計算甲每場比賽的平均得分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為(-∞,-1)∪(1,+∞),對定義域內(nèi)的任意x,滿足f(x)+f(-x)=0,當(dāng)x<-1時,f(x)=
1+ln(-x-1)
x+a
(a為常),且x=2是函數(shù)f(x)的一個極值點,
(Ⅰ)求實數(shù)a的值;
(Ⅱ)如果當(dāng)x≥2時,不等式f(x)≥
m
x
恒成立,求實數(shù)m的最大值;
(Ⅲ)求證:n-2(
1
2
+
2
3
+
3
4
+…+
n
n+1
)<ln(n+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f1(x)=
2
1+x
,若fn+1(x)=f1[fn(x)],an=
fn(0)-1
fn(0)+2
,其中n∈N*
(1)求a1
(2)求證:{an}為等比數(shù)列,并求其通項公式;
(3)若T2n=a1+2a2+3a3+…2na2n,Qn=
4n2+n
36n2+36n+9
.其中n∈N*,試比較T2n與Qn的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出的n值是
 

查看答案和解析>>

同步練習(xí)冊答案