15.設(shè)點A(-2,0)和B(0,3),在直線l:x-y+1=0上找一點P,使|PA|+|PB|的取值最小,則這個最小值為$\sqrt{17}$.

分析 求出點B關(guān)于直線l:x-y+1=0的對稱點為C,連結(jié)AC,則AC交直線l于點P,點P即為所求的點,此時,|PA|+|PB|=|PA|+|PC|,(|PA|+|PB|)min=|AC|.

解答 解:設(shè)點B關(guān)于直線l:x-y+1=0的對稱點為C(a,b),
則$\left\{\begin{array}{l}{\frac{0+a}{2}-\frac{3+b}{2}+1=0}\\{\frac{b-3}{a-0}=-1}\end{array}\right.$,解得a=2,b=1,∴C(2,1),
連結(jié)AC,則AC交直線l于點P,點P即為所求的點,
此時,|PA|+|PB|=|PA|+|PC|,
故(|PA|+|PB|)min=|AC|=$\sqrt{(2+2)^{2}+(1-0)^{2}}$=$\sqrt{17}$.
故答案為:$\sqrt{17}$.

點評 本題考查線段和的最小值的求法,是中檔題,解題時要認(rèn)真審題,注意數(shù)形結(jié)合思想的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若F1、F2是雙曲線$\frac{x^2}{4}-{y^2}=1$的兩個焦點,點P在雙曲線上,且點P的橫坐標(biāo)為8,則△F1PF2的面積為5$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知雙曲線的漸近線方程為$y=±\frac{1}{2}x$,且過點$(4,\sqrt{2})$,則此雙曲線的方程為$\frac{{x}^{2}}{8}-\frac{{y}^{2}}{2}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知橢圓$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1的左、右焦點分別為F1,F(xiàn)2,過F1且傾斜角為45°的直線l與橢圓相交于A,B兩點.則AB的中點坐標(biāo)( 。
A.(-$\frac{3}{5}$,$\frac{2}{5}$)B.(1,-1)C.(-1,$\frac{2}{5}$)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知全集U=R,集合A={x|-5<x<7},B={x|a+1<x<2a+15}.
(1)若a=0,求A∪B和∁UB;
(2)若A∩B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}$).
(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[$\frac{π}{8},\frac{3π}{4}$]上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)y=3sin(-2x-$\frac{π}{6}$)的單調(diào)遞增區(qū)間(  )
A.[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z)B.[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$](k∈Z)
C.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)D.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.定義在R上的偶函數(shù)f(x),滿足f(x+1)=-f(x),且f(x)在[-1,0]上是增函數(shù),
①f(x)為周期函數(shù);      
②f(x)的圖象關(guān)于x=1對稱;      
③f(x)在[0,1]上為增函數(shù);
④f(x)在[1,2]上為減函數(shù);   
⑤f(2)=f(0).
則上述說法正確的有①②⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(理科)如圖,已知四棱錐P-ABCD的底面ABCD為菱形,且∠ABC=60°,AB=PC=2,PA=PB=$\sqrt{2}$,
(1)求證:平面PAB⊥平面ABCD;
(2)求二面角P-AC-B的余弦值.

查看答案和解析>>

同步練習(xí)冊答案