函數(shù)f(x)=2sin(x-
π
3
),x∈[-π,0]的單調(diào)遞增區(qū)間是( 。
A、[-π,-
6
]
B、[-
6
,-
π
6
]
C、[-
π
3
,0]
D、[-
π
6
,0]
考點(diǎn):正弦函數(shù)的單調(diào)性
專題:計算題,三角函數(shù)的圖像與性質(zhì)
分析:令2kπ-
π
2
≤x-
π
3
≤2kπ+
π
2
,k∈z,解得x的范圍,可得函數(shù)f(x)=2sin(x-
π
3
),x∈[-π,0]的單調(diào)遞增區(qū)間.
解答: 解:令2kπ-
π
2
≤x-
π
3
≤2kπ+
π
2
,k∈z,解得2kπ-
π
6
≤x≤2kπ+
6
,
∵x∈[-π,0],
∴函數(shù)f(x)=2sin(x-
π
3
),x∈[-π,0]的單調(diào)遞增區(qū)間是[-
π
6
,0]
故選:D.
點(diǎn)評:本題主要考查復(fù)合三角函數(shù)的單調(diào)性,正弦函數(shù)的單調(diào)性,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P是雙曲線
x2
4
-
y2
12
=1上一點(diǎn),M,N是雙曲線的左,右頂點(diǎn),若直線PM的斜率的取值范圍是[2,3],則直線PN的斜率的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,由拋物線C1:y2=4x與C2:y2=8(3-x)圍成一個封閉圖形OACB,F(xiàn)是拋物線的焦點(diǎn),直線y=h(h<2)交兩弧于P、Q兩點(diǎn),則當(dāng)h=
 
時,h|PQ|最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z1=1+i,z2=x+2i(x∈R),若z1z2為純虛數(shù),則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,若sinA=
5
5
,tanB=
1
3
,則A+B=( 。
A、
π
4
4
B、
π
4
C、
4
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M和N是兩個集合,定義集合M-N=|x|x∈M,且x∉N|,如果M=|x|log2x<1|,N=|x|x-2<1|,那么M-N=(  )
A、{x|0<x<1}
B、{x|0<x≤1}
C、{x|1≤x<2}
D、{x|2≤x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

5人并排一起照相,甲恰好坐在中間的概率為( 。
A、
1
20
B、
1
10
C、
2
3
D、
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
log
1
2
(x-3)
的定義域是(  )
A、(-∞,4)
B、(-∞,4]
C、(3,4]
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
1+2i
3+i3
的值是( 。
A、
1
2
+
1
2
i
B、
1
10
+
7
10
i
C、
5
8
+
5
8
i
D、
1
8
+
3
4
i

查看答案和解析>>

同步練習(xí)冊答案