(本小題滿分14分)

如圖,斜三棱柱中,側(cè)面底面ABC,側(cè)面是菱形,E、F分別是、AB的中點(diǎn).

求證:(1)EF∥平面;

(2)平面CEF⊥平面ABC

 

【答案】

證明:取BC中點(diǎn)M,連結(jié)FM,.在△ABC中,因?yàn)?i>F,M分別為BABC的中點(diǎn),所以FM AC.因?yàn)?i>E為的中點(diǎn),AC,所以FM .從而四邊形為平行四邊形,所以.所以EF∥平面. (2) 在平面內(nèi),作,O為垂足。因?yàn)椤?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013040920054960939049/SYS201304092006209062315574_DA.files/image011.png">,所以,從而OAC的中點(diǎn). 所以,因而.因?yàn)閭?cè)面⊥底面ABC,交線為AC,,所以底面ABC.所以底面ABC.又因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013040920054960939049/SYS201304092006209062315574_DA.files/image018.png">平面EFC, 所以平面CEF⊥平面ABC

【解析】

試題分析:證明:(1)取BC中點(diǎn)M,連結(jié)FM,

在△ABC中,因?yàn)?i>F,M分別為BA,BC的中點(diǎn),

所以FM AC.                        ………………………………2分

因?yàn)?i>E為的中點(diǎn),AC,所以FM .  

從而四邊形為平行四邊形,所以.……………………4分

又因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013040920054960939049/SYS201304092006209062315574_DA.files/image020.png">平面,平面

所以EF∥平面.…………………6分  

(2) 在平面內(nèi),作,O為垂足. 

因?yàn)椤?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013040920054960939049/SYS201304092006209062315574_DA.files/image011.png">,所以 ,

從而OAC的中點(diǎn).……8分   

所以,因而.      …………………10分

因?yàn)閭?cè)面⊥底面ABC,交線為AC,,所以底面ABC

所以底面ABC.             …………………………………………12分

又因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013040920054960939049/SYS201304092006209062315574_DA.files/image018.png">平面EFC,所以平面CEF⊥平面ABC.………………14分

考點(diǎn):本題考查了空間中的線面關(guān)系

點(diǎn)評(píng):證明立體幾何問題常常利用幾何方法,通過證明或找到線面之間的關(guān)系,依據(jù)判定定理或性質(zhì)進(jìn)行證明求解

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡(jiǎn)f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時(shí),求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對(duì)一應(yīng)季商品過去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤(rùn);

(Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊(cè)答案