【題目】下面給出的關(guān)系式中正確的個(gè)數(shù)是( )
① =
② =
③ 2=| |2
④( ) = ( )
⑤| |≤ .
A.0
B.1
C.2
D.3
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將甲、乙兩顆骰子先后各拋一次,a、b分別表示拋擲甲、乙兩顆骰子所出現(xiàn)的點(diǎn)數(shù)﹒圖中三角形陰影部分的三個(gè)頂點(diǎn)為(0,0)、(4,0)和(0,4).
(1)若點(diǎn)P(a,b)落在如圖陰影所表示的平面區(qū)域(包括邊界)的事件記為A,求事件A的概率;
(2)若點(diǎn)P(a,b)落在直線x+y=m(m為常數(shù))上,且使此事件的概率P最大,求m和P的值﹒
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,AD=CD=2AB=2,PA⊥AD,AB∥CD,CD⊥AD,E為PC的中點(diǎn),且DE=EC.
(1)求證:PA⊥面ABCD;
(2)設(shè)PA=a,若平面EBD與平面ABCD所成銳二面角θ∈( , ),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+6.
(1)當(dāng)a=5時(shí),解不等式f(x)<0;
(2)若不等式f(x)>0的解集為R,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn= an+n﹣3.
(1)求證:數(shù)列{an﹣1}是等比數(shù)列,并求{an}的通項(xiàng)公式;
(2)令cn=log3(a1﹣1)+log3(a2﹣1)+…+log3(an﹣1),對(duì)任意n∈N*, + +…+ <k都成立,求k的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:(x﹣1)2+(y﹣2)2=25及直線l:(2m+1)x+(m+1)y=7m+4.(m∈R)
(1)證明:不論m取什么實(shí)數(shù),直線l與圓C恒相交;
(2)求直線l與圓C所截得的弦長(zhǎng)的最短長(zhǎng)度及此時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】?jī)蓷l平行直線和圓的位置關(guān)系定義為:若兩條平行直線和圓有四個(gè)不同的公共點(diǎn),則稱兩條平行線和圓“相交”;若兩平行直線和圓沒(méi)有公共點(diǎn),則稱兩條平行線和圓“相離”;若兩平行直線和圓有一個(gè)、兩個(gè)或三個(gè)不同的公共點(diǎn),則稱兩條平行線和圓“相切”.已知直線l1:2x﹣y+a=0,l2:2x﹣y+a2+1=0和圓:x2+y2+2x﹣4=0相切,則a的取值范圍是( )
A.a>7或a<﹣3
B.
C.﹣3≤a≤一 或 ≤a≤7
D.a≥7或a≤﹣3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)P是橢圓 上一點(diǎn),M、N分別是兩圓:(x+4)2+y2=1和(x﹣4)2+y2=1上的點(diǎn),則|PM|+|PN|的最小值、最大值的分別為( )
A.9,12
B.8,11
C.8,12
D.10,12
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)f(x)的最小正周期和函數(shù)的單調(diào)遞增區(qū)間;
(2)已知△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若 ,求AB.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com