若直線l1,l2的方向向量分別為
v1
=(1,2,3),
v2
=(-
1
2
,-1,-
3
2
),則l1,l2的位置關(guān)系是(  )
A、垂直B、重合
C、平行D、平行或重合
考點(diǎn):直線的方向向量
專題:計(jì)算題,直線與圓
分析:由直線l1,l2的方向向量分別為
v1
=(1,2,3),
v2
=(-
1
2
,-1,-
3
2
),可得
v1
=-2
v2
,即可得出結(jié)論..
解答: 解:∵直線l1,l2的方向向量分別為
v1
=(1,2,3),
v2
=(-
1
2
,-1,-
3
2
),
v1
=-2
v2
,
∴l(xiāng)1,l2平行或重合,
故選:D.
點(diǎn)評(píng):本題考查直線的方向向量,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)若復(fù)數(shù)Z滿足Z(1+i)=1-i(i是虛數(shù)單位),則Z的共軛復(fù)數(shù)
.
Z
=
 

(2)
.
Z
表示復(fù)數(shù)Z的共軛復(fù)數(shù),已知復(fù)數(shù)Z1=1-
3
i,Z2=2
3
-2i,則
.
Z1
.
Z2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,已知O(0,0)、A(2,3)、B(-4,7),則向量
OA
在向量
OB
方向上的投影等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x2-2tx-4(t∈R)在閉區(qū)間[0,1]上的最小值記為g(t).則g(t)的函數(shù)解析式(  )
A、g(t)=
-4,t≤0
-t2-4,0<t≤1
-2t-3,t>1
B、g(t)=-t2+2
C、g(t)=-t2+2t
D、g(t)=-t2+2t+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線C:y2=2px(p>0)上的點(diǎn)(
5
2
,a)到焦點(diǎn)F的距離為3,圓E是以(p,0)為圓心p為半徑的圓.
(1)求拋物線C和圓E的方程;
(2)若圓E內(nèi)切于△PQR,其中Q,R在y軸上,且R點(diǎn)在Q點(diǎn)上方,P在拋物線C上且在x軸下方,當(dāng)△PQR的面積取最小值時(shí),求直線PR和PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

|2-3x|≤4的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
2015x+1+2014
2015x+1
+2014sinx,x∈[-
π
2
,
π
2
]的最大值為M,最小值為N,那么M+N=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求出函數(shù)f(x)=(
1
3
x+2,x∈[-1,2]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的兩個(gè)焦點(diǎn)分別為F1(-2,0),F(xiàn)2(2,0),離心率e=
2

(Ⅰ)求雙曲線的標(biāo)準(zhǔn)方程
(Ⅱ)點(diǎn)P是雙曲線上一點(diǎn),且∠F1PF2=30°,求△PF1F2的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案