【題目】某自來(lái)水廠的蓄水池有噸水,水廠每小時(shí)可向蓄水池中注水噸,同時(shí)蓄水池又向居民小區(qū)不間斷供水,小時(shí)內(nèi)供水總量為噸,其中.
(Ⅰ)從供水開(kāi)始到第幾小時(shí),蓄水池中的存水量最少? 最少水量是多少噸?
(Ⅱ)若蓄水池中水量少于噸時(shí),就會(huì)出現(xiàn)供水緊張現(xiàn)象,請(qǐng)問(wèn):在一天的小時(shí)內(nèi),大約有幾小時(shí)出現(xiàn)供水緊張現(xiàn)象?
【答案】(Ⅰ)6(Ⅱ)8
【解析】
試題(Ⅰ)函數(shù)應(yīng)用題,關(guān)鍵在于正確理解題意:存水量為蓄水池原有水量加上注水量,減去供水量,即存水量,這是一個(gè)二次函數(shù),求其最值,需明確定義域與對(duì)稱軸之間關(guān)系:因?yàn)?/span>,所以當(dāng)時(shí),,(Ⅱ)先由題意得:y≤80時(shí),就會(huì)出現(xiàn)供水緊張.由此建立關(guān)于x的不等關(guān)系,最后解此不等式即得一天中會(huì)有多少小時(shí)出現(xiàn)這種供水緊張的現(xiàn)象.
試題解析:(Ⅰ))設(shè)供水小時(shí),水池中存水噸.則
當(dāng)時(shí),,
故從供水開(kāi)始到第小時(shí),蓄水池中的存水量最少,最少水量為噸.
(Ⅱ)令x;則x2=6t,即y=400+10x2﹣120x;
依題意400+10x2﹣120x<80,得x2﹣12x+32<0,
解得,4<x<8,即,;
即由,所以每天約有8小時(shí)供水緊張.
答:一天小時(shí)內(nèi)大約有小時(shí)出現(xiàn)供水緊張.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解創(chuàng)建文明城市過(guò)程中學(xué)生對(duì)創(chuàng)建工作的滿意情況,相關(guān)部門對(duì)某中學(xué)的100名學(xué)生進(jìn)行調(diào)查.得到如下的統(tǒng)計(jì)表:
滿意 | 不滿意 | 合計(jì) | |
男生 | 50 | ||
女生 | 15 | ||
合計(jì) | 100 |
已知在全部100名學(xué)生中隨機(jī)抽取1人對(duì)創(chuàng)建工作滿意的概率為.
(1)在上表中相應(yīng)的數(shù)據(jù)依次為;
(2)是否有充足的證據(jù)說(shuō)明學(xué)生對(duì)創(chuàng)建工作的滿意情況與性別有關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在上是增函數(shù),則的取值范圍是( 。
A. B. C. D.
【答案】C
【解析】
若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),則x2﹣ax+3a>0且f(2)>0,根據(jù)二次函數(shù)的單調(diào)性,我們可得到關(guān)于a的不等式,解不等式即可得到a的取值范圍.
若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),
則當(dāng)x∈[2,+∞)時(shí),
x2﹣ax+3a>0且函數(shù)f(x)=x2﹣ax+3a為增函數(shù)
即,f(2)=4+a>0
解得﹣4<a≤4
故選:C.
【點(diǎn)睛】
本題考查的知識(shí)點(diǎn)是復(fù)合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),對(duì)數(shù)函數(shù)的單調(diào)區(qū)間,其中根據(jù)復(fù)合函數(shù)的單調(diào)性,構(gòu)造關(guān)于a的不等式,是解答本題的關(guān)鍵.
【題型】單選題
【結(jié)束】
10
【題目】圓錐的高和底面半徑之比,且圓錐的體積,則圓錐的表面積為( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=,x∈(-2,2).
(1) 判斷f(x)的奇偶性并說(shuō)明理由;
(2) 求證:函數(shù)f(x)在(-2,2)上是增函數(shù);
(3) 若f(2+a)+f(1-2a)>0,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+2mx+2m+3(m∈R),若關(guān)于x的方程f(x)=0有實(shí)數(shù)根,且兩根分別為x1,x2,則(x1+x2)x1x2,的最大值為()
A. B. 2C. 3D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(多選題)設(shè)正實(shí)數(shù)滿足,則()
A. 有最小值4B. 有最小值
C. 有最大值D. 有最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于的不等式,其中為大于0的常數(shù)。
(1)若不等式的解集為,求實(shí)數(shù)的取值范圍;
(2)若不等式的解集為,且中恰好含有一個(gè)整數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: =1(a>b>0)與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),F(xiàn)為左焦點(diǎn),原點(diǎn)O到直線FA的距離為 b.
(1)求橢圓C的離心率;
(2)設(shè)b=2,直線y=kx+4與橢圓C交于不同的兩點(diǎn)M,N,求證:直線BM與直線AN的交點(diǎn)G在定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017·全國(guó)卷Ⅲ文,18)某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.
(1)估計(jì)六月份這種酸奶一天的需求量不超過(guò)300瓶的概率;
(2)設(shè)六月份一天銷售這種酸奶的利潤(rùn)為Y(單位:元).當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫出Y的所有可能值,并估計(jì)Y大于零的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com