【題目】某校為了推動(dòng)數(shù)學(xué)教學(xué)方法的改革,學(xué)校將高一年級(jí)部分生源情況基本相同的學(xué)生分成甲、乙兩個(gè)班,每班各40人,甲班按原有模式教學(xué),乙班實(shí)施教學(xué)方法改革.經(jīng)過一年的教學(xué)實(shí)驗(yàn),將甲、乙兩個(gè)班學(xué)生一年來的數(shù)學(xué)成績?nèi)∑骄鶖?shù),兩個(gè)班學(xué)生的平均成績均在,按照區(qū)間,,,,進(jìn)行分組,繪制成如下頻率分布直方圖,規(guī)定不低于80分(百分制)為優(yōu)秀.

完成表格,并判斷是否有以上的把握認(rèn)為“數(shù)學(xué)成績優(yōu)秀與教學(xué)改革有關(guān)”;

(2)從乙班,,分?jǐn)?shù)段中,按分層抽樣隨機(jī)抽取7名學(xué)生座談,從中選三位同學(xué)發(fā)言,記來自發(fā)言的人數(shù)為隨機(jī)變量,求的分布列和期望.

【答案】(1)答案見解析;(2)答案見解析.

【解析】試題分析:

(1)依題意得,則有90%以上的把握認(rèn)為數(shù)學(xué)成績優(yōu)秀與教學(xué)改革有關(guān)”.

(2)由題意可得隨機(jī)變量的所有可能取值為,據(jù)此可得分布列,計(jì)算數(shù)學(xué)期望.

試題解析:

(1)依題意得

90%以上的把握認(rèn)為數(shù)學(xué)成績優(yōu)秀與教學(xué)改革有關(guān)

(2)從乙班分?jǐn)?shù)段中抽人數(shù)分別為2,3,2

依題意隨機(jī)變量的所有可能取值為

則分布列:

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

)設(shè),討論函數(shù)的單調(diào)性.

)設(shè),求證:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,,是棱上的動(dòng)點(diǎn),的中點(diǎn).

(1)當(dāng)中點(diǎn)時(shí),求證:平面;

(2)在棱上是否存在點(diǎn),使得平面與平面所成銳二面角為,若存在,求的長,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù).

(1)求函數(shù)的最小值;

(2)設(shè)是函數(shù)的兩個(gè)零點(diǎn),,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三棱柱的所有棱長均,為棱(不包括端點(diǎn))上一動(dòng)點(diǎn),的中點(diǎn).

(Ⅰ)若,求的長;

(Ⅱ)當(dāng)在棱(不包括端點(diǎn))上運(yùn)動(dòng)時(shí),求平面與平面的夾角的余弦值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.已知直線的參數(shù)方程是是參數(shù)),圓的極坐標(biāo)方程為.

(1)求圓心的直角坐標(biāo);

(2)由直線上的點(diǎn)向圓引切線,并切線長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).在極坐標(biāo)系(與平面直角坐標(biāo)系取相同的長度單位,且以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,直線的方程為

(1)求曲線的普通方程及直線的直角坐標(biāo)方程;

(2)設(shè)是曲線上的任意一點(diǎn),求點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某校矩形的航天知識(shí)競賽中,參與競賽的文科生與理科生人數(shù)之比為1:3,且成績分布在范圍內(nèi),規(guī)定分?jǐn)?shù)在80以上(含80)的同學(xué)獲獎(jiǎng),按文理科用分層抽樣的放發(fā)抽取200人的成績作為樣本,得到成績的頻率分布直方圖.

(Ⅰ)填寫下面的列聯(lián)表,能否有超過95%的把握認(rèn)為“獲獎(jiǎng)與學(xué)生的文理科有關(guān)”;

(Ⅱ)將上述調(diào)查所得的頻率視為概率,現(xiàn)從參賽學(xué)生中,任意抽取3名學(xué)生,記“獲獎(jiǎng)”學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.

附表及公式:,其中

查看答案和解析>>

同步練習(xí)冊答案