【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.已知直線(xiàn)的參數(shù)方程是(是參數(shù)),圓的極坐標(biāo)方程為.
(1)求圓心的直角坐標(biāo);
(2)由直線(xiàn)上的點(diǎn)向圓引切線(xiàn),并切線(xiàn)長(zhǎng)的最小值.
【答案】(1).(2).
【解析】試題分析:(1)利用兩角和的余弦公式展開(kāi)解析式,兩邊同乘以利用 即可得圓的直角坐標(biāo)方程,從而可得圓心坐標(biāo);(2)參數(shù)方程利用代入法消去參數(shù)可,得直線(xiàn)的普通方程為,可得圓心到直線(xiàn)距離是,于是直線(xiàn)上的點(diǎn)向圓引的切線(xiàn)長(zhǎng)的最小值是.
試題解析:(1)∵,
∴,
∴圓的直角坐標(biāo)方程為,
即,∴圓心直角坐標(biāo)為.
(2)方法1:直線(xiàn)上的點(diǎn)向圓引切線(xiàn)長(zhǎng)是
,
∴直線(xiàn)上的點(diǎn)向圓引的切線(xiàn)長(zhǎng)的最小值是.
方法2:直線(xiàn)的普通方程為,
∴圓心到直線(xiàn)距離是,
∴直線(xiàn)上的點(diǎn)向圓引的切線(xiàn)長(zhǎng)的最小值是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某機(jī)構(gòu)組織語(yǔ)文、數(shù)學(xué)學(xué)科能力競(jìng)賽,按照一定比例淘汰后,頒發(fā)一二三等獎(jiǎng).現(xiàn)有某考場(chǎng)的兩科考試成績(jī)數(shù)據(jù)統(tǒng)計(jì)如下圖所示,其中數(shù)學(xué)科目成績(jī)?yōu)槎泉?jiǎng)的考生有人.
(Ⅰ)求該考場(chǎng)考生中語(yǔ)文成績(jī)?yōu)橐坏泉?jiǎng)的人數(shù);
(Ⅱ)用隨機(jī)抽樣的方法從獲得數(shù)學(xué)和語(yǔ)文二等獎(jiǎng)的學(xué)生中各抽取人,進(jìn)行綜合素質(zhì)測(cè)試,將他們的綜合得分繪成莖葉圖,求樣本的平均數(shù)及方差并進(jìn)行比較分析;
(Ⅲ)已知本考場(chǎng)的所有考生中,恰有人兩科成績(jī)均為一等獎(jiǎng),在至少一科成績(jī)?yōu)橐坏泉?jiǎng)的考生中,隨機(jī)抽取人進(jìn)行訪(fǎng)談,求兩人兩科成績(jī)均為一等獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,矩形中,,平面,,為上的點(diǎn),且平面.
(1)求證:平面;
(2)求平面與平面所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了推動(dòng)數(shù)學(xué)教學(xué)方法的改革,學(xué)校將高一年級(jí)部分生源情況基本相同的學(xué)生分成甲、乙兩個(gè)班,每班各40人,甲班按原有模式教學(xué),乙班實(shí)施教學(xué)方法改革.經(jīng)過(guò)一年的教學(xué)實(shí)驗(yàn),將甲、乙兩個(gè)班學(xué)生一年來(lái)的數(shù)學(xué)成績(jī)?nèi)∑骄鶖?shù),兩個(gè)班學(xué)生的平均成績(jī)均在,按照區(qū)間,,,,進(jìn)行分組,繪制成如下頻率分布直方圖,規(guī)定不低于80分(百分制)為優(yōu)秀.
完成表格,并判斷是否有以上的把握認(rèn)為“數(shù)學(xué)成績(jī)優(yōu)秀與教學(xué)改革有關(guān)”;
(2)從乙班,,分?jǐn)?shù)段中,按分層抽樣隨機(jī)抽取7名學(xué)生座談,從中選三位同學(xué)發(fā)言,記來(lái)自發(fā)言的人數(shù)為隨機(jī)變量,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018安徽江南十校高三3月聯(lián)考】線(xiàn)段為圓: 的一條直徑,其端點(diǎn), 在拋物線(xiàn): 上,且, 兩點(diǎn)到拋物線(xiàn)焦點(diǎn)的距離之和為.
(I)求直徑所在的直線(xiàn)方程;
(II)過(guò)點(diǎn)的直線(xiàn)交拋物線(xiàn)于, 兩點(diǎn),拋物線(xiàn)在, 處的切線(xiàn)相交于點(diǎn),求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解甲、乙兩種產(chǎn)品的質(zhì)量,從中分別隨機(jī)抽取了10件樣品,測(cè)量產(chǎn)品中某種元素的含量(單位:毫克),如圖所示是測(cè)量數(shù)據(jù)的莖葉圖.規(guī)定:當(dāng)產(chǎn)品中的此中元素的含量不小于18毫克時(shí),該產(chǎn)品為優(yōu)等品.
(1)試用樣品數(shù)據(jù)估計(jì)甲、乙兩種產(chǎn)品的優(yōu)等品率;
(2)若從甲、乙兩種產(chǎn)品的優(yōu)等品中各隨機(jī)抽取1件,抽到的2件優(yōu)等品中,“甲產(chǎn)品的含量28毫克優(yōu)等品必須在內(nèi),且乙產(chǎn)品的含量28毫克優(yōu)等品不包含在內(nèi)”為事件,求事件的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),設(shè)關(guān)于的方程有個(gè)不同的實(shí)數(shù)解,則的所有可能的值為( )
A. 3 B. 1或3 C. 4或6 D. 3或4或6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線(xiàn)的方程是,曲線(xiàn)的參數(shù)方程是(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線(xiàn)與曲線(xiàn)的極坐標(biāo)方程;
(2)若射線(xiàn)與曲線(xiàn)交于點(diǎn),與直線(xiàn)交于點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某石化集團(tuán)獲得了某地深海油田區(qū)塊的開(kāi)采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分幾口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來(lái)布置井位進(jìn)行全面勘探,由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用,勘探初期數(shù)據(jù)資料見(jiàn)如表:
(參考公式和計(jì)算結(jié)果:
, , , )
(1)1~6號(hào)舊井位置線(xiàn)性分布,借助前5組數(shù)據(jù)求得回歸直線(xiàn)方程為,求的值,并估計(jì)的預(yù)報(bào)值.
(2)現(xiàn)準(zhǔn)備勘探新井,若通過(guò)1,3,5,7號(hào)并計(jì)算出的, 的值(, 精確到0.01)相比于(1)中的, ,值之差不超過(guò)10%,則使用位置最接近的已有舊井,否則在新位置打開(kāi),請(qǐng)判斷可否使用舊井?
(3)設(shè)出油量與勘探深度的比值不低于20的勘探井稱(chēng)為優(yōu)質(zhì)井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質(zhì)井?dāng)?shù)的分布列與數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com