過點(-2,0)且垂直于直線2x-6y+l=0的直線l的方程式________.

3x+y+6=0
分析:根據(jù)兩直線垂直,斜率之積等于-1,設(shè)過點(-2,0)與直線2x-6y+l=0垂直的直線方程是 6x+2y+n=0,把點(-2,0)代入可解得n值,從而得到所求的直線方程.
解答:設(shè)過點(-2,0)與直線2x-6y+l=0垂直的直線方程是 6x+2y+n=0,
把點(-2,0)代入可解得n=12,
故所求的直線方程是 3x+y+6=0.
故答案為:3x+y+6=0.
點評:本題考查根據(jù)兩直線垂直的性質(zhì),利用待定系數(shù)法求直線方程的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在平面直角坐標(biāo)系xoy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=4
(I)若直線l過點A(4,0),且被圓C1截得的弦長為2
3
,求直線l的方程;
(II)設(shè)P(a,b)為平面上的點,滿足:存在過點P的兩條互相垂的直線l1與l2,l1的斜率為2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,試求滿足條件的a,b的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P是圓x2+y2=9,上任意一點,由P點向x軸做垂線段PQ,垂足為Q,點M在PQ上,且
PM
=2
MQ
,點M的軌跡為曲線C.
(Ⅰ)求曲線C的軌跡方程;
(Ⅱ)過點(0,-2)的直線l與曲線C相交于A、B兩點,試問在直線y=-
1
8
上是否存在點N,使得四邊形OANB為矩形,若存在求出N點坐標(biāo),若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)坐標(biāo)系中,已知一個圓心在坐標(biāo)原點,半徑為2的圓,從這個圓上任意一點P向y軸作垂線段PP′,P′為垂足.
(1)求線段PP′中點M的軌跡C的方程.
(2)過點Q(一2,0)作直線l與曲線C交于A、B兩點,設(shè)N是過點(-
4
17
,0),且以言
a
=(0,1)
為方向向量的直線上一動點,滿足
ON
=
OA
+
OB
(O為坐標(biāo)原點),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線Z的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a3
+
y2
b2
=1(a>b>0)
的右焦點為F,離心率為
2
2
,過點F且與實軸垂直的直線被橢圓截得的線段長為
2
,O為坐標(biāo)原點.
(I)求橢圓C的方程;
(Ⅱ)設(shè)經(jīng)過點M(0,2)作直線A B交橢圓C于A、B兩點,求△AOB面積的最大值;
(Ⅲ)設(shè)橢圓的上頂點為N,是否存在直線l交橢圓于P,Q兩點,使點F為△PQN的垂心?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年高考數(shù)學(xué)(江蘇卷) 題型:044

在平面直角坐標(biāo)系xoy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=4

(1)若直線l過點A(4,0),且被圓C1截得的弦長為,求直線l的方程;

(2)設(shè)P為平面上的點,滿足:存在過點P的無窮多對互相垂的直線l1l2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,試求所有滿足條件的點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案