分析 (1)證明AB⊥BC,AB=BC,即可證明:△ABC是等腰直角三角形;
(2)由題意E(5.5,-1),∴$\overrightarrow{BE}$=(1.5,1),設D(x,y),則由t(x,y)=(1.5,1),求出AC方程,即可得出結論.
解答 (1)證明:∵點A(2,1),B(4,-2),C(7,0),
∴$\overrightarrow{AB}$=(2,-3),$\overrightarrow{BC}$=(3,2),
∵$\overrightarrow{AB}$•$\overrightarrow{BC}$=2×3+(-3)×2=0,
∴$\overrightarrow{AB}$⊥$\overrightarrow{BC}$.
又|$\overrightarrow{AB}$|=|$\overrightarrow{BC}$|=$\sqrt{13}$,
∴△ABC是等腰直角三角形;
(2)解:由題意E(5.5,-1),∴$\overrightarrow{BE}$=(1.5,1).
設D(x,y),則由t(x,y)=(1.5,1),
∴x=$\frac{1.5}{t}$,y=$\frac{1}{t}$,
∵$\overrightarrow{AD}$∥$\overrightarrow{AC}$,$\overrightarrow{AD}$=(x-2,y-1),$\overrightarrow{AC}$=(5,-1)
∴x-5y+3=0,
∴$\frac{1.5}{t}-\frac{5}{t}+3=0$,
∴t=1.5,
∵D(1,$\frac{2}{3}$).
點評 本題考查三角形中的計算問題,考查向量知識的運用,考查學生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com