3.若函數(shù)f(x)=x(x-c)2在x=2處有極小值,則常數(shù)c的值為2.

分析 根據(jù)函數(shù)在x=2處有極小值,得到f′(2)=0,解出關(guān)于c的方程,再驗(yàn)證是否為極小值即可.

解答 解:∵函數(shù)f(x)=x(x-c)2,
∴f′(x)=3x2-4cx+c2
又f(x)=x(x-c)2在x=2處有極值,
∴f′(2)=12-8c+c2=0,
解得c=2或6,
又由函數(shù)在x=2處有極小值,故c=2,
c=6時(shí),函數(shù)f(x)=x(x-c)2在x=2處有極大值,
故答案為:2.

點(diǎn)評(píng) 本題考查函數(shù)在某一點(diǎn)取得極值的條件,是中檔題,本題解題的關(guān)鍵是函數(shù)在這一點(diǎn)取得極值,則函數(shù)在這一點(diǎn)點(diǎn)導(dǎo)函數(shù)等于0,注意這個(gè)條件的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0)的最大值為4,最小值為-4,最小正周期為$\frac{π}{2}$,直線x=$\frac{π}{3}$是其圖象的一條對(duì)稱軸,則符合條件的函數(shù)解析式是( 。
A.y=4sin(4x+$\frac{π}{6}$)B.y=4sin(4x+$\frac{π}{3}$)C.y=2sin(4x+$\frac{π}{3}$)D.y=2sin(4x+$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.平面直角坐標(biāo)系xOy中,已知點(diǎn)A(2,1),B(4,-2),C(7,0).
(1)證明:△ABC是等腰直角三角形;
(2)若E為BC的中點(diǎn),試在線段AC上確定點(diǎn)D及確定實(shí)數(shù)t,使得$\overrightarrow{OB}$+t$\overrightarrow{OD}$=$\overrightarrow{OE}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若a,b在區(qū)間$[{0,\sqrt{3}}]$上取值,則函數(shù)$f(x)=\frac{1}{3}a{x^3}+b{x^2}+\frac{1}{4}ax$在R上有兩個(gè)相異極值點(diǎn)的概率是(  )
A.$\frac{1}{4}$B.$1-\frac{{\sqrt{3}}}{2}$C.$\frac{3}{4}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.求矩陣M=$[{\begin{array}{l}0&0\\ 0&1\end{array}}]$的特征值和特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=ex-ln(x+m).
(1)設(shè)x=0是f(x)的極值點(diǎn),求函數(shù)f(x)在[1,2]上的最值;
(2)若對(duì)任意x1,x2∈[0,2]且x1>x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>-1,求m的取值范圍.
(3)當(dāng)m≤2時(shí),證明f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)f(x)=x3-2tx2+t2x在x=2處有極小值,則實(shí)數(shù)t的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知a是實(shí)常數(shù),函數(shù)f(x)=xlnx+ax2,
(1)若曲線y=f(x)在x=1處的切線過(guò)點(diǎn)A(0,-2),求實(shí)數(shù)a的值;
(2)若f(x)有兩個(gè)極值點(diǎn)x1,x2(x1<x2
①求證:-$\frac{1}{2}$<a<0;
②求證:f(x2)>f(x1)且x1∈(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列四個(gè)命題:(1)y=1+x和y=$\sqrt{(1+x)^{2}}$表示相等函數(shù);
(2)函數(shù)f(x)在x>0時(shí)是增函數(shù),x<0也是增函數(shù),所以f(x)是增函數(shù);
(3)f(x)=x2+2(a-1)x+2在區(qū)間(-∞,4]上是減函數(shù),則實(shí)數(shù)a的取值范圍是a≥-3;
(4)[-1,0]是y=x2-2|x|-3的一個(gè)遞增區(qū)間.
其中正確命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案