分析 ⊙C:x2+y2+2x-4y+3=0,化為標(biāo)準(zhǔn)方程,求出圓心C,半徑r.設(shè)P(x,y).由切線的性質(zhì)可得:CM⊥PM,利用|PM|=|PO|,可得2x1-4y1+3=0.要使|PM|最小,只要|PO|最小即可.
解答 解:如圖所示,⊙C:x2+y2+2x-4y+3=0化為(x+1)2+(y-2)2=2,圓心C(-1,2),半徑r=$\sqrt{2}$.
因為|PM|=|PO|,
所以|PO|2+r2=|PC|2(C為圓心,r為圓的半徑),
所以x12+y12+2=(x1+1)2+(y1-2)2,即2x1-4y1+3=0.要使|PM|最小,只要|PO|最小即可.
當(dāng)直線PO垂直于直線2x-4y+3=0時,即直線PO的方程為2x+y=0時,|PM|最小,此時P點即為兩直線的交點,得P點坐標(biāo)(-$\frac{3}{10}$,$\frac{3}{5}$).
故答案為(-$\frac{3}{10}$,$\frac{3}{5}$).
點評 本題考查了圓的切線的性質(zhì)、勾股定理、兩點之間的距離公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | $\sqrt{3}$ | C. | $-\sqrt{3}$ | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-4,-2] | B. | [-4,+∞) | C. | [-3,+∞) | D. | [-3,-2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A∩B=∅ | B. | A∩B=A | C. | A∪B=A | D. | A∪B=R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0} | B. | {8} | C. | (-2,4) | D. | (-4,2) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com