【題目】已知函數(shù)在處的切線(xiàn)經(jīng)過(guò)點(diǎn)
(1)討論函數(shù)的單調(diào)性;
(2)若不等式恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1)在單調(diào)遞減;(2).
【解析】試題分析:
(1)對(duì)函數(shù)進(jìn)行求導(dǎo),結(jié)合導(dǎo)函數(shù)與切線(xiàn)的關(guān)系求得 實(shí)數(shù) 的值,確定函數(shù)的解析式之后即可討論函數(shù)的單調(diào)性.
(2)分離系數(shù)后討論 的取值范圍即可,構(gòu)造新函數(shù)后求導(dǎo),討論新函數(shù)的值域,注意討論值域時(shí)利用反證法假設(shè)存在實(shí)數(shù) 滿(mǎn)足 ,由得出的矛盾知假設(shè)不成立,即函數(shù)的最小值開(kāi)區(qū)間處為 .
試題解析:
(1)由題意得
∴,
∴在處的切線(xiàn)方程為
即,
∵點(diǎn)在該切線(xiàn)上,∴,
∴
函數(shù)在單調(diào)遞減;
(2)由題意知且,
原不等式等價(jià)于,
設(shè),
由(1)得在單調(diào)遞減,且,
當(dāng)時(shí), ;當(dāng)時(shí), ;
∴,
假設(shè)存在正數(shù),使得,
若,當(dāng)時(shí), ;
若,當(dāng)時(shí), ;
∴不存在這樣的正數(shù),使得,∴的值域?yàn)?/span>
∴的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某商業(yè)公司為全面激發(fā)每一位職工工作的積極性、創(chuàng)造性,確保2017年超額完成銷(xiāo)售任務(wù),向黨的十九大獻(xiàn)禮.年初該公司制定了一個(gè)激勵(lì)銷(xiāo)售人員的獎(jiǎng)勵(lì)方案:每季度銷(xiāo)售利潤(rùn)不超過(guò)15萬(wàn)元時(shí),則按其銷(xiāo)售利潤(rùn)的進(jìn)行獎(jiǎng)勵(lì);當(dāng)季銷(xiāo)售利潤(rùn)超過(guò)15萬(wàn)元時(shí),若超過(guò)部分為萬(wàn)元,則超出部分按進(jìn)行獎(jiǎng)勵(lì),沒(méi)超出部分仍按季銷(xiāo)售利潤(rùn)的進(jìn)行獎(jiǎng)勵(lì).記獎(jiǎng)金總額為 (單位:萬(wàn)元),季銷(xiāo)售利潤(rùn)為 (單位:萬(wàn)元).
(Ⅰ)請(qǐng)寫(xiě)出該公司激勵(lì)銷(xiāo)售人員的獎(jiǎng)勵(lì)方案的函數(shù)表達(dá)式;
(Ⅱ)如果業(yè)務(wù)員李明在本年的第三季度獲得5.5萬(wàn)元的獎(jiǎng)金,那么,他在該季度的銷(xiāo)售利潤(rùn)是多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,與直角坐標(biāo)系取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(1)化曲線(xiàn)的方程為普通方程,并說(shuō)明它們分別表示什么曲線(xiàn);
(2)設(shè)曲線(xiàn)與軸的一個(gè)交點(diǎn)的坐標(biāo)為,經(jīng)過(guò)點(diǎn)作斜率為1的直線(xiàn), 交曲線(xiàn)于兩點(diǎn),求線(xiàn)段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線(xiàn)的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,過(guò)點(diǎn)的直線(xiàn)交拋物線(xiàn)于兩點(diǎn),線(xiàn)段的長(zhǎng)度為8, 的中點(diǎn)到軸的距離為3.
(1)求拋物線(xiàn)的標(biāo)準(zhǔn)方程;
(2)設(shè)直線(xiàn)在軸上的截距為6,且拋物線(xiàn)交于兩點(diǎn),連結(jié)并延長(zhǎng)交拋物線(xiàn)的準(zhǔn)線(xiàn)于點(diǎn),當(dāng)直線(xiàn)恰與拋物線(xiàn)相切時(shí),求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從5名男生和4名女生中選出4人去參加座談會(huì),問(wèn):
(1)如果4人中男生和女生各選2人,有多少種選法?
(2)如果男生中的甲與女生中的乙至少要有1人在內(nèi),有多少種選法?
(3)如果4人中必須既有男生又有女生,有多少種選法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 的定義域?yàn)?/span> ,若對(duì)于任意的 , ,都有 ,且當(dāng) 時(shí),有 .
(1)證明: 為奇函數(shù);
(2)判斷 在 上的單調(diào)性,并證明;
(3)設(shè) ,若 ( 且 )對(duì) 恒成立,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)設(shè).
①若,曲線(xiàn)在處的切線(xiàn)過(guò)點(diǎn),求的值;
②若,求在區(qū)間上的最大值.
(2)設(shè)在, 兩處取得極值,求證: , 不同時(shí)成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市要建成宜商、宜居的國(guó)際化新城,該城市的東城區(qū)、西城區(qū)分別引進(jìn)8個(gè)廠(chǎng)家,現(xiàn)對(duì)兩個(gè)區(qū)域的16個(gè)廠(chǎng)家進(jìn)行評(píng)估,綜合得分情況如莖葉圖所示.
(1)根據(jù)莖葉圖判斷哪個(gè)區(qū)域廠(chǎng)家的平均分較高;
(2)規(guī)定85分以上(含85分)為優(yōu)秀廠(chǎng)家,若從該兩個(gè)區(qū)域各選一個(gè)優(yōu)秀廠(chǎng)家,求得分差距不超過(guò)5分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年“一帶一路”國(guó)際合作高峰論壇于今年5月14日至15日在北京舉行.為高標(biāo)準(zhǔn)完成高峰論壇會(huì)議期間的志愿服務(wù)工作,將從27所北京高校招募大學(xué)生志愿者,某調(diào)查機(jī)構(gòu)從是否有意愿做志愿者在某高校訪(fǎng)問(wèn)了80人,經(jīng)過(guò)統(tǒng)計(jì),得到如下丟失數(shù)據(jù)的列聯(lián)表:(,表示丟失的數(shù)據(jù))
無(wú)意愿 | 有意愿 | 總計(jì) | |
男 | 40 | ||
女 | 5 | ||
總計(jì) | 25 | 80 |
(1)求出的值,并判斷:能否有99.9%的把握認(rèn)為有意愿做志愿者與性別有關(guān);
(2)若表中無(wú)意愿做志愿者的5個(gè)女同學(xué)中,3個(gè)是大學(xué)三年級(jí)同學(xué),2個(gè)是大學(xué)四年級(jí)同學(xué).現(xiàn)從這5個(gè)同學(xué)中隨機(jī)選2同學(xué)進(jìn)行進(jìn)一步調(diào)查,求這2個(gè)同學(xué)是同年級(jí)的概率.
附參考公式及數(shù)據(jù): ,其中.
0.40 | 0.25 | 0.10 | 0.010 | 0.005 | 0.001 | |
0.708 | 1.323 | 2.706 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com