【題目】從5名男生和4名女生中選出4人去參加座談會,問:

(1)如果4人中男生和女生各選2人,有多少種選法?

(2)如果男生中的甲與女生中的乙至少要有1人在內,有多少種選法?

(3)如果4人中必須既有男生又有女生,有多少種選法?

【答案】(1)30;(2)91種;(3)120種.

【解析】試題分析:1)根據(jù)題意,分別計算5名男生中選出24名女生中選出2的選法數(shù)目,由分步計數(shù)原理計算可得答案;
2)用間接法分析:先計算在9人中任選4人的選法數(shù)目,再排除其中甲乙都沒有入選的選法數(shù)目,即可得答案;
3)用間接法分析:先計算在9人中任選4人的選法數(shù)目,再排除其中只有男生只有女生的選法數(shù)目,即可得答案.

試題解析:

(1)

(2)方法1:(間接法)

在9人選4人的選法中,把男甲和女乙都不在內的去掉,就得到符合條件的選法數(shù)為:

(種);

方法2:(直接法)

甲在內乙不在內有種,乙在內甲不在內有種,甲、乙都在內有種,所以男生中的甲與女生中的乙至少有1人在內的選法共有:

(種).

(3)方法1:(間接法)

在9人選4人的選法中,把只有男生和只有女生的情況排除掉,得到選法總數(shù)為:

(種);

方法2:(直接法)

分別按含男1,2,3人分類,得到符合條件的選法總數(shù)為:

(種).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了解甲、乙兩廠產品的質量,從兩廠生產的產品中分別隨機抽取各10件樣品,測量產品中某種元素的含量(單位:毫克),如圖是測量數(shù)據(jù)的莖葉圖:

規(guī)定:當產品中的此種元素含量不小于16毫克時,該產品為優(yōu)等品.

(1)從乙廠抽出的上述10件樣品中,隨機抽取3件,求抽到的3件樣品中優(yōu)等品數(shù)的分布列及其數(shù)學期望;

(2)從甲廠的10件樣品中有放回地逐個隨機抽取3件,也從乙廠的10件樣品中有放回地逐個隨機抽取3件,求抽到的優(yōu)等品數(shù)甲廠恰比乙廠多2件的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“累積凈化量”是空氣凈化器質量的一個重要衡量指標,它是指空氣凈化從開始使用到凈化效率為50%時對顆粒物的累積凈化量,以克表示,根據(jù)《空氣凈化器》國家標準,對空氣凈化器的累計凈化量有如下等級劃分:

累積凈化量(克)

12以上

等級

為了了解一批空氣凈化器(共5000臺)的質量,隨機抽取臺機器作為樣本進行估計,已知這臺機器的累積凈化量都分布在區(qū)間中,按照、、均勻分組,其中累積凈化量在的所有數(shù)據(jù)有:4.5,4.6,5.2,5.3,5.7和5.9,并繪制了頻率分布直方圖,如圖所示:

(1)求的值及頻率分布直方圖中的值;

(2)以樣本估計總體,試估計這批空氣凈化器(共5000臺)中等級為的空氣凈化器有多少臺?

(3)從累積凈化量在的樣本中隨機抽取2臺,求恰好有1臺等級為的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為調查某地區(qū)老人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調查了500位老年人,結果如下:

(Ⅰ)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;

(Ⅱ)能否有的把握認為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關?

(Ⅲ)根據(jù)(Ⅱ)的結論,能否提供更好的調查方法來估計該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?說明理由.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中, 平面,底面為直角梯形, , ,且為線段上的一動點.

(Ⅰ)若為線段的中點,求證: 平面;

(Ⅱ)當直線與平面所成角小于,求長度的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)處的切線經過點

(1)討論函數(shù)的單調性;

(2)若不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某次水下科研考察活動中,需要潛水員潛入水深為60米的水底進行作業(yè),根據(jù)已往經驗,潛水員下潛的平均速度為(米/單位時間),每單位時間的用氧量為(升),在水底作業(yè)10個單位時間,每單位時間用氧量為(升),返回水面的平均速度為(米/單位時間),每單位時間用氧量為(升),記該潛水員在此次考察活動中的總用氧量為(升).

(1)求關于的函數(shù)關系式;

(2)若,求當下潛速度取什么值時,總用氧量最少.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知城和城相距,現(xiàn)計劃以為直徑的半圓上選擇一點(不與點 重合)建造垃圾處理廠.垃圾處理廠對城市的影響度與所選地點到城市的距離有關,對城和城的總影響度為對城與城的影響度之和.記點到的距離為,建在處的垃圾處理廠對城和城的總影響度為.統(tǒng)計調查表明:垃圾處理廠對城的影響度與所選地點到城的距離的平方成反比例關系,比例系數(shù)為4;對城的影響度與所選地點到城的距離的平方成反比例關系,比例系數(shù)為.當垃圾處理廠建在的中點時,對城和城的總影響度為0.065.

(1)將表示成的函數(shù).

(2)討論(1)中函數(shù)的單調性,并判斷在上是否存在一點,使建在此處的垃圾處理廠對城和城的總影響度最小?若存在,求出該點到城的距離;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的左、右焦點分別為,點為雙曲線上一點,若的內切圓半徑為1,且圓心到原點的距離為,則雙曲線的離心率是__________.

查看答案和解析>>

同步練習冊答案