A. | a≤0 | B. | 0$≤a≤\frac{3}{5}$ | C. | a≤$\frac{3}{5}$ | D. | a≤1 |
分析 求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,通過函數(shù)的最小值是f(1),得到a的范圍即可.
解答 解:f′(x)=3ax2+2(a-1)x-1,x∈[0,1],
a=0時,f′(x)=-2x-1<0,
f(x)在[0,1]遞減,f(x)min=f(1)符合題意;
a≠0時,△=4(a2+a+1)>0,
x1=$\frac{1-a-\sqrt{{a}^{2}+a+1}}{3a}$,x2=$\frac{1-a+\sqrt{{a}^{2}+a+1}}{3a}$,
a>0時,若f(x)在x=1處取最小值,
只需x1≤0且x2≥1,解得:0<a≤$\frac{3}{5}$,
a<0時,若f(x)在x=1處取最小值,
只需x1≥1或x2≤0,解得:a<0;
綜上:a≤$\frac{3}{5}$;
故選:C.
點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及二次函數(shù)的性質(zhì),是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$$\overrightarrow{a}$+$\frac{1}{6}$$\overrightarrow$+$\frac{1}{6}$$\overrightarrow{c}$ | B. | $\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$+$\frac{1}{3}$$\overrightarrow{c}$ | C. | $\frac{1}{6}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$+$\frac{1}{3}$$\overrightarrow{c}$ | D. | $\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{6}$$\overrightarrow$+$\frac{1}{6}$$\overrightarrow{c}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | -3 | C. | -2 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 24 | B. | 32 | C. | 20 | D. | 28 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,1+$\frac{1}{e}$] | B. | (1,e-1] | C. | [1+$\frac{1}{e}$,e-1] | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 6 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平移$\frac{2π}{3}$個單位長度 | B. | 向左平移$\frac{π}{3}$個單位長度 | ||
C. | 向右平移$\frac{2π}{3}$個單位長度 | D. | 向右平移$\frac{π}{3}$個單位長度 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com