如圖,曲線與曲線
相交于
、
、
、
四個(gè)點(diǎn).
⑴ 求的取值范圍;
⑵ 求四邊形的面積的最大值及此時(shí)對角線
與
的交點(diǎn)坐標(biāo).
(1)(2)
的最大值為16.,對角線
與
交點(diǎn)坐標(biāo)為
.
解析試題分析:(1)通過直線與拋物線聯(lián)立,借助判別式和韋達(dá)定理求解參數(shù)的范圍;(2)根據(jù)圖形的對稱性,明確四邊系A(chǔ)BCD的面積為,然后借助韋達(dá)定理將三角形面積表示為含有參數(shù)
的表達(dá)式,最后化簡通過構(gòu)造函數(shù)
, 利那用求導(dǎo)的方法研究最值. 分別求出對角線
與
的直線方程,進(jìn)而求交點(diǎn)坐標(biāo).
試題解析:(1) 聯(lián)立曲線消去
可得
,
,根據(jù)條件可得
,解得
.
(4分)
(2) 設(shè),
,
,
,
則.
(6分)
令,則
,
, (7分)
設(shè),
則令,
可得當(dāng)時(shí),
的最大值為
,從而
的最大值為16.
此時(shí),即
,則
. (9分)
聯(lián)立曲線的方程消去
并整理得
,解得
,
,
所以點(diǎn)坐標(biāo)為
,
點(diǎn)坐標(biāo)為
,
,
則直線的方程為
, (11分)
當(dāng)時(shí),
,由對稱性可知
與
的交點(diǎn)在
軸上,
即對角線與
交點(diǎn)坐標(biāo)為
. (12分)
考點(diǎn):1.直線與圓錐曲線的綜合應(yīng)用能力;2.直線與圓錐曲線的相關(guān)知識(shí);3.圓錐曲線中極值的求取.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,焦距為
,且經(jīng)過點(diǎn)
,直線
交橢圓于不同的兩點(diǎn)A,B.
(1)求的取值范圍;,
(2)若直線不經(jīng)過點(diǎn)
,求證:直線
的斜率互為相反數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:(
)上任意一點(diǎn)到兩焦點(diǎn)距離之和為
,離心率為
,左、右焦點(diǎn)分別為
,
,點(diǎn)
是右準(zhǔn)線上任意一點(diǎn),過
作直 線
的垂線
交橢圓于
點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)證明:直線與直線
的斜率之積是定值;
(3)點(diǎn)的縱坐標(biāo)為3,過
作動(dòng)直線
與橢圓交于兩個(gè)不同點(diǎn)
,在線段
上取點(diǎn)
,滿足
,試證明點(diǎn)
恒在一定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的左右頂點(diǎn)分別為
,離心率
.過該橢圓上任一點(diǎn)
作
軸,垂足為
,點(diǎn)
在
的延長線上,且
.
(1)求橢圓的方程;
(2)求動(dòng)點(diǎn)的軌跡
的方程;
(3)設(shè)直線(
點(diǎn)不同于
)與直線
交于點(diǎn)
,
為線段
的中點(diǎn),試判斷直線
與曲線
的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C:的半徑等于橢圓E:
(a>b>0)的短半軸長,橢圓E的右焦點(diǎn)F在圓C內(nèi),且到直線l:y=x-
的距離為
-
,點(diǎn)M是直線l與圓C的公共點(diǎn),設(shè)直線l交橢圓E于不同的兩點(diǎn)A(x1,y1),B(x2,y2).
(Ⅰ)求橢圓E的方程;
(Ⅱ)求證:|AF|-|BF|=|BM|-|AM|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知、
分別是橢圓
:
的左、右焦點(diǎn),點(diǎn)
在直線
上,線段
的垂直平分線經(jīng)過點(diǎn)
.直線
與橢圓
交于不同的兩點(diǎn)
、
,且橢圓
上存在點(diǎn)
,使
,其中
是坐標(biāo)原點(diǎn),
是實(shí)數(shù).
(Ⅰ)求的取值范圍;
(Ⅱ)當(dāng)取何值時(shí),
的面積最大?最大面積等于多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
動(dòng)點(diǎn)與定點(diǎn)
的距離和它到直線
的距離之比是常數(shù)
,記點(diǎn)
的軌跡為曲線
.
(I)求曲線的方程;
(II)設(shè)直線與曲線
交于
兩點(diǎn),
為坐標(biāo)原點(diǎn),求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓C: 的左、右焦點(diǎn)分別為
,離心率為
,點(diǎn)A是橢圓上任一點(diǎn),
的周長為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)任作一動(dòng)直線l交橢圓C于
兩點(diǎn),記
,若在線段
上取一點(diǎn)R,使得
,則當(dāng)直線l轉(zhuǎn)動(dòng)時(shí),點(diǎn)R在某一定直線上運(yùn)動(dòng),求該定直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(13分)已知橢圓C:(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(﹣1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點(diǎn)
.
(I)求橢圓C的離心率:
(II)設(shè)過點(diǎn)A(0,2)的直線l與橢圓C交于M,N兩點(diǎn),點(diǎn)Q是線段MN上的點(diǎn),且,求點(diǎn)Q的軌跡方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com