已知、分別是橢圓: 的左、右焦點,點在直線上,線段的垂直平分線經(jīng)過點.直線與橢圓交于不同的兩點、,且橢圓上存在點,使,其中是坐標原點,是實數(shù).
(Ⅰ)求的取值范圍;
(Ⅱ)當取何值時,的面積最大?最大面積等于多少?
(Ⅰ);(Ⅱ)當時,的面積最大,最大面積為.
解析試題分析:1.由于題目較長,一些考生不能識別有效信息,未能救出橢圓的方程求.2. 第(Ⅰ)問,求的取值范圍.其主要步驟與方法為:由,得關于、的不等式…… ①.由根與系數(shù)的關系、,在橢圓上,可以得到關于、、的等式…… ②.把等式②代入①,可以達到消元的目的,但問題是這里一共有三個變量,就是消了,那還有關于和的不等式,如何求出的取值范圍呢?這將會成為難點.事實上,在把等式②代入①的過程中,和一起被消掉,得到了關于的不等式.解之即可.
3.第(Ⅱ)問要把的面積函數(shù)先求出來.用弦長公式求底,用點到直線的距離公式求高,得到的面積,函數(shù)中有兩個自變量和,如何求函數(shù)的最大值呢?這又成為難點.這里很難想到把②代入面積函數(shù)中,因為②中含有三個變量,即使代入消掉一個后,面積函數(shù)依然有兩個自變量.但這里很巧合的是:代入消掉后,事實上,也自動地消除了,于是得到了面積和自變量的函數(shù)關系,再由第(Ⅰ)中所得到的的取值范圍,利用均值不等式,即可求出面積的最大值了.
試題解析::(Ⅰ)設橢圓的半焦距為,根據(jù)題意得
解方程組得
∴橢圓的方程為.
由,得.
根據(jù)已知得關于的方程有兩個不相等的實數(shù)根.
∴,
化簡得:.
設、,則
.
(1)當時,點、關于原點對稱,,滿足題意;
(2)當時,點、關于原點不對稱,.
由,得 即
∵在橢圓上,∴,
化簡得:.
∵,∴.
∵,
∴,即且.
綜合(1)、(2)兩種情況,得實數(shù)的取值范圍是.
(Ⅱ)當
科目:高中數(shù)學 來源: 題型:解答題
以直角坐標系的原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的長度單位.已知直線的參數(shù)方程為 (t為參數(shù),0<a<),曲線C的極坐標方程為.
(1)求曲線C的直角坐標方程;
(2)設直線l與曲線C相交于A、B兩點,當a變化時,求|AB|的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知動圓C經(jīng)過點,且在x軸上截得弦長為2,記該圓圓心的軌跡為E.
(Ⅰ)求曲線E的方程;
(Ⅱ)過點的直線m交曲線E于A,B兩點,過A,B兩點分別作曲線E的切線,兩切線交于點C,當△ABC的面積為時,求直線m的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知動點與定點的距離和它到直線的距離之比是常數(shù),記的軌跡為曲線.
(I)求曲線的方程;
(II)設直線與曲線交于兩點,點關于軸的對稱點為,試問:當變化時,直線與軸是否交于一個定點?若是,請寫出定點的坐標,并證明你的結(jié)論;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
橢圓的左、右焦點分別為F1(-1,0),F(xiàn)2(1,0),過F1作與x軸不重合的直線l交橢圓于A,B兩點.
(I)若ΔABF2為正三角形,求橢圓的離心率;
(II)若橢圓的離心率滿足,為坐標原點,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知是橢圓的右焦點,圓與軸交于兩點,是橢圓與圓的一個交點,且.
(Ⅰ)求橢圓的離心率;
(Ⅱ)過點與圓相切的直線與的另一交點為,且的面積等于,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系中,橢圓的右焦點為,離心率為.分別過,的兩條弦,相交于點(異于,兩點),且.
(1)求橢圓的方程;
(2)求證:直線,的斜率之和為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com