【題目】甲、乙二人約定某日早上在某處會(huì)面,甲在內(nèi)某一時(shí)刻隨機(jī)到達(dá),乙在內(nèi)某一時(shí)刻隨機(jī)到達(dá),則甲至少需等待乙5分鐘的概率是________.
【答案】
【解析】
由題意知本題是一個(gè)幾何概型,試驗(yàn)包含的所有事件是Ω={(x,y)|0≤x≤20,5≤y≤20},作出事件對(duì)應(yīng)的集合表示的面積,寫出滿足條件的事件是A={(x,y)|0≤x≤20,5≤y≤20,y﹣x≥5 },算出事件對(duì)應(yīng)的集合表示的面積,根據(jù)幾何概型概率公式得答案.
由題意知本題是一個(gè)幾何概型,
設(shè)甲和乙到達(dá)的分別為7時(shí)x分、7時(shí)y分,
則10≤x≤20,5≤y≤20,
甲至少需等待乙5分鐘,即y﹣x≥5,
則試驗(yàn)包含的所有區(qū)域是Ω={(x,y)|0≤x≤20,5≤y≤20},
甲至少需等待乙5分鐘所表示的區(qū)域?yàn)?/span>A={(x,y)|0≤x≤20,5≤y≤20,y﹣x≥5},
如圖:
正方形的面積為20×15=300,陰影部分的面積為15×15,
∴甲至少需等待乙5分鐘的概率是,
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究所計(jì)劃利用“神舟十號(hào)”宇宙飛船進(jìn)行新產(chǎn)品搭載實(shí)驗(yàn),計(jì)劃搭載新產(chǎn)品甲,乙,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實(shí)驗(yàn)費(fèi)用和預(yù)計(jì)產(chǎn)生收益來決定具體安排,通過調(diào)查,有關(guān)數(shù)據(jù)如表:
產(chǎn)品甲(件) | 產(chǎn)品乙(件) | ||
研制成本與搭載費(fèi)用之和(萬元/件) | 200 | 300 | 計(jì)劃最大資金額3000元 |
產(chǎn)品重量(千克/件) | 10 | 5 | 最大搭載重量110千克 |
預(yù)計(jì)收益(萬元/件) | 160 | 120 |
試問:如何安排這兩種產(chǎn)品的件數(shù)進(jìn)行搭載,才能使總預(yù)計(jì)收益達(dá)到最大,最大收益是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為了解下屬某部門對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問50名職工,根據(jù)這50名職工對(duì)該部門的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為
(1)求頻率分布直方圖中的值;
(2)估計(jì)該企業(yè)的職工對(duì)該部門評(píng)分不低于80的概率;
(3)從評(píng)分在的受訪職工中,隨機(jī)抽取2人,求此2人評(píng)分都在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓 的兩個(gè)焦點(diǎn)為,點(diǎn)P在橢圓C 上,且 , ,.
(1)求橢圓C的方程;
(2)若直線L過點(diǎn)交橢圓于A、B兩點(diǎn),且點(diǎn)M為線段AB的中點(diǎn),求直線L的一般方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中放有大小和形狀相同而顏色互不相同的小球若干個(gè), 其中標(biāo)號(hào)為0的小球1個(gè), 標(biāo)號(hào)為1的小球1個(gè), 標(biāo)號(hào)為2的小球2個(gè), 從袋子中不放回地隨機(jī)抽取2個(gè)小球, 記第一次取出的小球標(biāo)號(hào)為,第二次取出的小球標(biāo)號(hào)為.
(1) 記事件表示“”, 求事件的概率;
(2) 在區(qū)間內(nèi)任取2個(gè)實(shí)數(shù), 記的最大值為,求事件“”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線 的左、右焦點(diǎn)分別為,過作傾斜角為的直線與軸和雙曲線的右支分別交于兩點(diǎn),若點(diǎn)平分線段,則該雙曲線的離心率是( )
A. B. C. 2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】唐三彩,中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術(shù)的特點(diǎn),在中國文化中占有重要的歷史地位,在陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產(chǎn)至今已有1300多年的歷史,制作工藝十分復(fù)雜,它的制作過程必須先后經(jīng)過兩次燒制,當(dāng)?shù)谝淮螣坪细窈蠓娇蛇M(jìn)入第二次燒制,兩次燒制過程相互獨(dú)立。某陶瓷廠準(zhǔn)備仿制甲、乙、丙三件不同的唐三彩工藝品,根據(jù)該廠全面治污后的技術(shù)水平,經(jīng)過第一次燒制后,甲、乙、丙三件工藝品合格的概率依次為, , ,經(jīng)過第二次燒制后,甲、乙、丙三件工藝品合格的概率依次為, , .
(1)求第一次燒制后甲、乙、丙三件中恰有一件工藝品合格的概率;
(2)經(jīng)過前后兩次燒制后,甲、乙、丙三件工藝品成為合格工藝品的件數(shù)為,求隨機(jī)變量的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某心理學(xué)研究小組在對(duì)學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其注意力指數(shù)p與聽課時(shí)間t之間的關(guān)系滿足如圖所示的曲線.當(dāng)t∈(0,14]時(shí),曲線是二次函數(shù)圖象的一部分,當(dāng)t∈[14,40]時(shí),曲線是函數(shù)(且)圖象的一部分.根據(jù)專家研究,當(dāng)注意力指數(shù)p大于等于80時(shí)聽課效果最佳.
(1)試求的函數(shù)關(guān)系式;
(2)一道數(shù)學(xué)難題,講解需要22分鐘,問老師能否經(jīng)過合理安排在學(xué)生聽課效果最佳時(shí)講完?請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com