14.在數(shù)列{an}中,a${\;}_{2}=\frac{3}{2},{a}_{3}=\frac{7}{3}$,且數(shù)列{nan+1}是等差數(shù)列,則an=$\frac{4n-5}{n}$.

分析 利用等差數(shù)列的通項(xiàng)公式即可得出

解答 解:∵數(shù)列{nan+1}是等差數(shù)列,
∴nan+1=2a2+1+(n-2)[(3a3+1)-(2a2+1)]
=3+1+(n-2)(8-4)
=4n-4,
∴an=$\frac{4n-5}{n}$.
故答案為:$\frac{4n-5}{n}$.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.如圖甲是某條公共汽車線路收支差額y與乘客量x的圖象(收支差額=車票收入-支出費(fèi)用),由于目前本條線路虧損,公司有關(guān)人員提出了兩條建議:建議

(Ⅰ)是不改變車票價(jià)格,減少支出費(fèi)用;建議
(Ⅱ)是不改變支出費(fèi)用,提高車票價(jià)格.下面給出四個(gè)圖象:在這些圖象中,(1)反映了建議(Ⅰ),(3)反映了建議(Ⅱ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.命題“?x>0,(x+1)ex>1”的否定是假命題(填真命題/假命題).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若定義在R上的函數(shù)f(x)當(dāng)且僅當(dāng)存在有限個(gè)非零自變量x,使得f(-x)=f(x),則稱f(x)為類偶函數(shù).那么下列函數(shù)中,為類偶函數(shù)的是( 。
A.f(x)=4cosxB.f(x)=x2-2x+3C.f(x)=2x+1D.f(x)=x3-3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如圖,四邊形ABCD中,∠BAD=135°,∠ADC=120°,∠BCD=45°,∠ABC=60°,BC=$\sqrt{3}$,則線段AC長(zhǎng)度的取值范圍是( 。
A.$[{\sqrt{2},\sqrt{3}})$B.$[{\frac{3}{2},\sqrt{3}})$C.$({\sqrt{2},\sqrt{3}})$D.$({\frac{3}{2},\sqrt{3}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若雙曲線的一條漸近線方程為y=$\sqrt{2}$x,則其離心率為$\frac{{\sqrt{6}}}{2}$或$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.定義兩種運(yùn)算:a⊕b=$\sqrt{{a}^{2}-^{2}}$,a?b=$\sqrt{(a-b)^{2}}$,則f(x)=$\frac{2⊕x}{2-(x?2)}$是( 。
A.奇函數(shù)B.偶函數(shù)C.既奇又偶函數(shù)D.非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.①求函數(shù)的導(dǎo)數(shù):y=$\frac{x}{(2x+1)^{3}}$
②計(jì)算定積分:${∫}_{-1}^{8}$$\root{3}{x}$dx=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.對(duì)于函數(shù)$f(x)=\left\{\begin{array}{l}1-\left|x+1\right|,x∈[-2,0]\\ 2f(x-2),x∈(0,+∞)\end{array}\right.$,有如下三個(gè)命題:
①f(x)的單調(diào)遞減區(qū)間為[2n-3,2n-2](n∈N*
②f(x)的值域?yàn)閇0,+∞)
③若-2<a≤0,則方程f(x)=x+a在區(qū)間[-2,0]內(nèi)有3個(gè)不相等的實(shí)根
其中,真命題是①②.(將真命題的序號(hào)填寫(xiě)在橫線上)

查看答案和解析>>

同步練習(xí)冊(cè)答案