【題目】如圖所示的多面體是由一個(gè)直平行六面體被平面AEFG所截后得到的,其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.

(1)求證:BD⊥平面ADG;
(2)求直線(xiàn)GB與平面AEFG所成角的正弦值.

【答案】(1)證明:在△BAD中,∵AB=2AD=2,∠BAD=60°.

由余弦定理BD2=AD2+AB2﹣2ABADcos60°,

∵AB2=AD2+DB2,

∴AD⊥DB,

在直平行六面體中,GD⊥平面ABCD,DB平面ABCD,∴GD⊥DB,

又AD∩GD=D,

∴BD⊥平面ADG.

(2)解:如圖以D為原點(diǎn)建立空間直角坐標(biāo)系D﹣xyz,

∵∠BAE=∠GAD=45°,AB=2AD=2,

∴A(1,0,0), , ,G(0,0,1), , , ,

設(shè)平面AEFG的法向量 令x=1,得 ,z=1,

,

設(shè)直線(xiàn)GB和平面AEFG的夾角為θ,

,

所以直線(xiàn)GB與平面AEFG所成角的正弦值為


【解析】(1)求一條直線(xiàn)垂直于一個(gè)平面,證明這條直線(xiàn)與這個(gè)平面內(nèi)相交的兩條直線(xiàn)垂直即可;(2)先根據(jù)圖形特點(diǎn)建立空間直角坐標(biāo)系,求得平面AEFG的法向量,最終求得直線(xiàn)GB與平面AEFG所成角的正弦值.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用直線(xiàn)與平面垂直的判定和空間角的異面直線(xiàn)所成的角,掌握一條直線(xiàn)與一個(gè)平面內(nèi)的兩條相交直線(xiàn)都垂直,則該直線(xiàn)與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線(xiàn)”這一條件不可忽視;b)定理體現(xiàn)了“直線(xiàn)與平面垂直”與“直線(xiàn)與直線(xiàn)垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想;已知為兩異面直線(xiàn),A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的內(nèi)角A,B,C滿(mǎn)足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+ ,面積S滿(mǎn)足1≤S≤2,記a,b,c分別為A,B,C所對(duì)的邊,在下列不等式一定成立的是(  )
A.bc(b+c)>8
B.ab(a+b)>16
C.6≤abc≤12
D.12≤abc≤24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,焦點(diǎn)在x軸的橢圓,離心率e= ,且過(guò)點(diǎn)A(﹣2,1),由橢圓上異于點(diǎn)A的P點(diǎn)發(fā)出的光線(xiàn)射到A點(diǎn)處被直線(xiàn)y=1反射后交橢圓于Q點(diǎn)(Q點(diǎn)與P點(diǎn)不重合).

(1)求橢圓標(biāo)準(zhǔn)方程;
(2)求證:直線(xiàn)PQ的斜率為定值;
(3)求△OPQ的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E、F、G分別是棱A1B1、AB、A1D1的中點(diǎn).

(Ⅰ)求證:GE⊥平面FCC1;
(Ⅱ)求二面角B﹣FC1﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是( 。

A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)F1和F2為雙曲線(xiàn) =1(a>0,b>0)的兩個(gè)焦點(diǎn),若F1 , F2 , P(0,2b)是正三角形的三個(gè)頂點(diǎn),則雙曲線(xiàn)的漸近線(xiàn)方程是(  )
A.y=± x
B.y=± x
C.y=± x
D.y=± x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,三棱柱ABC﹣A1B1C1中,已知AB⊥側(cè)面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°.

(Ⅰ)求證:C1B⊥平面ABC;
(Ⅱ)E是棱CC1所在直線(xiàn)上的一點(diǎn),若二面角A﹣B1E﹣B的正弦值為 ,求CE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面四邊形ABCD中,已知∠A= ,∠B= ,AB=6.在AB邊上取點(diǎn)E使得BE=1,連結(jié)EC,ED,若∠CED= ,EC= .則CD=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的首項(xiàng)a1=m,其前n項(xiàng)和為Sn , 且滿(mǎn)足Sn+Sn+1=3n2+2n,若對(duì)n∈N+ , an<an+1恒成立,則m的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案