【題目】設(shè)F1和F2為雙曲線 ﹣ =1(a>0,b>0)的兩個(gè)焦點(diǎn),若F1 , F2 , P(0,2b)是正三角形的三個(gè)頂點(diǎn),則雙曲線的漸近線方程是( 。
A.y=± x
B.y=± x
C.y=± x
D.y=± x
【答案】B
【解析】解:若F1,F(xiàn)2,P(0,2b)是正三角形的三個(gè)頂點(diǎn),
設(shè)F1(﹣c,0),F(xiàn)2(c,0),則|F1P|= ,
∵F1、F2、P(0,2b)是正三角形的三個(gè)頂點(diǎn),
∴ =2c,∴c2+4b2=4c2,
∴c2+4(c2﹣a2)=4c2,
∴c2=4a2,即c=2a,
b= = a,
∴雙曲線的漸近線方程為y=± x,
即為y=± x.
故答案為:B.
根據(jù)F1,F(xiàn)2,P(0,2b)是正三角形的三個(gè)頂點(diǎn),求得c與b的關(guān)系式,再結(jié)合雙曲線中a,b,c三者的關(guān)系,即可求得雙曲線的漸近線的方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=sin(2x+φ),其中φ為實(shí)數(shù),若f(x)≤|f( )|對(duì)(0,+∞)恒成立,且 ,則f(x)的單調(diào)遞增區(qū)間是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ln(x+1)﹣x2+(2﹣a)x﹣a(a∈R)若存在唯一的正整數(shù)x0 , 使得f(x0)>0,則實(shí)數(shù)a的取值范圍是( 。
A.[ , ]
B.( , )
C.( , ]
D.(ln3,ln2+1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)全集U=R,集合M={x|x2+x﹣2>0}, ,則(UM)∩N=( 。
A.[﹣2,0]
B.[﹣2,1]
C.[0,1]
D.[0,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的多面體是由一個(gè)直平行六面體被平面AEFG所截后得到的,其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
(1)求證:BD⊥平面ADG;
(2)求直線GB與平面AEFG所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2cos2x+2 sinxcosx+a,且當(dāng)x∈[0, ]時(shí),f(x)的最小值為2.
(Ⅰ)求a 的值;
(Ⅱ)先將函數(shù)y=f (x) 的圖象上點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮小為原來(lái)的 ,再將所得的圖象向右平移 個(gè)單位,得到函數(shù)y=g(x)的圖象,求方程g(x)=4在區(qū)間[0, ]上所有根之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(1,m), =(2,n).
(1)若m=3,n=﹣1,且 ⊥( +λ ),求實(shí)數(shù)λ的值;
(2)若| + |=5,求 的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】各項(xiàng)為正的數(shù)列{an}滿足 ,
(1)當(dāng)λ=an+1時(shí),求證:數(shù)列{an}是等比數(shù)列,并求其公比;
(2)當(dāng)λ=2時(shí),令 ,記數(shù)列{bn}的前n項(xiàng)和為Sn , 數(shù)列{bn}的前n項(xiàng)之積為Tn , 求證:對(duì)任意正整數(shù)n,2n+1Tn+Sn為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ax﹣1(e為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a>0時(shí),若f(x)≥0對(duì)任意的x∈R恒成立,求實(shí)數(shù)a的值;
(Ⅲ)求證: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com