某大學(xué)開(kāi)設(shè)甲、乙、丙三門(mén)選修課,學(xué)生是否選修哪門(mén)課互不影響.已知某學(xué)生只選修甲的概率為0.08,只選修甲和乙的概率是0.12,至少選修一門(mén)的概率是0.88,用ξ表示該學(xué)生選修的課程門(mén)數(shù)和沒(méi)有選修的課程門(mén)數(shù)的乘積.

(1)記“函數(shù)f(x)=x2+ξx為R上的偶函數(shù)”為事件A,求事件A的概率;

(2)求ξ的分布列.

 

(1)0.24

(2)

ξ

0

2

P

0.24

0.76

 

【解析】(1)設(shè)該學(xué)生選修課程甲、乙、丙的概率分別為a,b,c,依題意得

解得

若函數(shù)f(x)=x2+ξx為R上的偶函數(shù),

則ξ=0.

當(dāng)ξ=0時(shí),表示該學(xué)生選修三門(mén)課程或三門(mén)課程都沒(méi)選.

∴P(A)=P(ξ=0)=abc+(1-a)(1-b)(1-c)

=0.4×0.5×0.6+(1-0.4)(1-0.5)(1-0.6)=0.24.

∴事件A的概率為0.24.

(2)依題意知ξ=0,2.

則ξ的分布列為

ξ

0

2

P

0.24

0.76

 

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-1函數(shù)的概念、定義域和值域(解析版) 題型:選擇題

如圖,是張大爺晨練時(shí)所走的離家距離(y)與行走時(shí)間(x)之間的函數(shù)關(guān)系的圖象.若用黑點(diǎn)表示張大爺家的位置,則張大爺散步行走的路線可能是(  )

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-10導(dǎo)數(shù)的概念及運(yùn)算(解析版) 題型:填空題

已知函數(shù)f(x)=x-sinx-cosx的圖象在點(diǎn)A(x0,y0)處的切線斜率為1,則tanx0=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-8n次獨(dú)立重復(fù)實(shí)驗(yàn)與二項(xiàng)分布(解析版) 題型:選擇題

在高三的一個(gè)班中,有的學(xué)生數(shù)學(xué)成績(jī)優(yōu)秀,若從班中隨機(jī)找出5名學(xué)生,那么數(shù)學(xué)成績(jī)優(yōu)秀的學(xué)生數(shù)ξ~B(5,),則P(ξ=k)取最大值的k值為(  )

A.0 B.1 C.2 D.3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-7離散型隨機(jī)變量及分布列(解析版) 題型:填空題

某畢業(yè)生參加人才招聘會(huì),分別向甲、乙、丙三個(gè)公司投遞了個(gè)人簡(jiǎn)歷.假定該畢業(yè)生得到甲公司面試的概率為,得到乙、丙兩公司面試的概率均為p,且三個(gè)公司是否讓其面試是相互獨(dú)立的.記X為該畢業(yè)生得到面試的公司個(gè)數(shù).若P(X=0)=,則隨機(jī)變量X的數(shù)學(xué)期望E(X)=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-7離散型隨機(jī)變量及分布列(解析版) 題型:選擇題

甲乙兩人分別獨(dú)立參加某高校自主招生面試,若甲、乙能通過(guò)面試的概率都是,則面試結(jié)束后通過(guò)的人數(shù)X的數(shù)學(xué)期望是(  )

A. B. C.1 D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-6幾何概型(解析版) 題型:解答題

已知復(fù)數(shù)z=x+yi(x,y∈R)在復(fù)平面上對(duì)應(yīng)的點(diǎn)為M.

(1)設(shè)集合P={-4,-3,-2,0},Q={0,1,2},從集合P中隨機(jī)取一個(gè)數(shù)作為x,從集合Q中隨機(jī)取一個(gè)數(shù)作為y,求復(fù)數(shù)z為純虛數(shù)的概率;

(2)設(shè)x∈[0,3],y∈[0,4],求點(diǎn)M落在不等式組:所表示的平面區(qū)域內(nèi)的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-3二項(xiàng)式定理(解析版) 題型:選擇題

(2-)8展開(kāi)式中不含x4項(xiàng)的系數(shù)的和為(  )

A.-1 B.0 C.1 D.2

 

查看答案和解析>>

同步練習(xí)冊(cè)答案