某畢業(yè)生參加人才招聘會(huì),分別向甲、乙、丙三個(gè)公司投遞了個(gè)人簡(jiǎn)歷.假定該畢業(yè)生得到甲公司面試的概率為,得到乙、丙兩公司面試的概率均為p,且三個(gè)公司是否讓其面試是相互獨(dú)立的.記X為該畢業(yè)生得到面試的公司個(gè)數(shù).若P(X=0)=,則隨機(jī)變量X的數(shù)學(xué)期望E(X)=________.

 

【解析】∵P(X=0)==(1-p)2×,∴p=,隨機(jī)變量X的可能值為0,1,2,3,因此P(X=0)=,P(X=1)=×()2+2××()2=,P(X=2)=×()2×2+×()2=,P(X=3)=×()2=,因此E(X)=1×+2×+3×

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-1函數(shù)的概念、定義域和值域(解析版) 題型:解答題

已知函數(shù)f(x)=x2-4ax+2a+6,x∈R.

(1)若函數(shù)的值域?yàn)閇0,+∞),求a的值;

(2)若函數(shù)的值域?yàn)榉秦?fù)數(shù)集,求函數(shù)f(a)=2-a|a+3|的值域.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-10導(dǎo)數(shù)的概念及運(yùn)算(解析版) 題型:填空題

記定義在R上的函數(shù)y=f(x)的導(dǎo)函數(shù)為f′(x).如果存在x0∈[a,b],使得f(b)-f(a)=f′(x0)(b-a)成立,則稱x0為函數(shù)f(x)在區(qū)間[a,b]上的“中值點(diǎn)”.那么函數(shù)f(x)=x3-3x在區(qū)間[-2,2]上“中值點(diǎn)”的個(gè)數(shù)為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-8n次獨(dú)立重復(fù)實(shí)驗(yàn)與二項(xiàng)分布(解析版) 題型:解答題

深圳市某校中學(xué)生籃球隊(duì)假期集訓(xùn),集訓(xùn)前共有6個(gè)籃球,其中3個(gè)是新球(即沒有用過的球),3個(gè)是舊球(即至少用過一次的球).每次訓(xùn)練,都從中任意取出2個(gè)球,用完后放回.

(1)設(shè)第一次訓(xùn)練時(shí)取到的新球個(gè)數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望;

(2)求第二次訓(xùn)練時(shí)恰好取到一個(gè)新球的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-8n次獨(dú)立重復(fù)實(shí)驗(yàn)與二項(xiàng)分布(解析版) 題型:選擇題

甲、乙兩隊(duì)進(jìn)行排球決賽,現(xiàn)在的情形是甲隊(duì)只要再贏一局就獲冠軍,乙隊(duì)需要再贏兩局才能得冠軍,若兩隊(duì)每局獲勝的概率相同,則甲隊(duì)獲得冠軍的概率為(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-7離散型隨機(jī)變量及分布列(解析版) 題型:解答題

某大學(xué)開設(shè)甲、乙、丙三門選修課,學(xué)生是否選修哪門課互不影響.已知某學(xué)生只選修甲的概率為0.08,只選修甲和乙的概率是0.12,至少選修一門的概率是0.88,用ξ表示該學(xué)生選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積.

(1)記“函數(shù)f(x)=x2+ξx為R上的偶函數(shù)”為事件A,求事件A的概率;

(2)求ξ的分布列.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-7離散型隨機(jī)變量及分布列(解析版) 題型:選擇題

在15個(gè)村莊中有7個(gè)村莊交通不便,現(xiàn)從中任意選10個(gè)村莊,用ξ表示這10個(gè)村莊中交通不便的村莊數(shù),下列概率中等于的是(  )

A.P(ξ=2) B.P(ξ≤2)

C.P(ξ=4) D.P(ξ≤4)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-5古典概型(解析版) 題型:解答題

某停車場(chǎng)臨時(shí)停車按時(shí)段收費(fèi),收費(fèi)標(biāo)準(zhǔn)為:每輛汽車一次停車不超過1小時(shí)收費(fèi)6元,超過1小時(shí)的部分每小時(shí)收費(fèi)8元(不足1小時(shí)的部分按1小時(shí)計(jì)算).現(xiàn)有甲、乙二人在該停車場(chǎng)臨時(shí)停車,兩人停車都不超過4小時(shí).

(1)若甲停車1小時(shí)以上且不超過2小時(shí)的概率為,停車付費(fèi)多于14元的概率為,求甲臨時(shí)停車付費(fèi)恰為6元的概率;

(2)若每人停車的時(shí)間在每個(gè)時(shí)段的可能性相同,求甲、乙二人停車付費(fèi)之和為36元的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-3二項(xiàng)式定理(解析版) 題型:選擇題

(1+x)10(1+)10展開式中的常數(shù)項(xiàng)為(  )

A.1 B.()2 C. D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案