【題目】如圖,四棱錐中,底面為菱形,直線平面,,,上的一點,.

1)證明:直線平面

2)若,求二面角的余弦值.

【答案】1)證明見解析;(2

【解析】

1)設(shè),連接,由平面,可得,證明相似,可得,從而可知平面;

2)由,可知為正方形,以為原點,,,所在方向分別為,軸的正半軸建立空間直角坐標系,分別求得平面的法向量,進而可求得二面角的余弦值.

1)設(shè),連接,∵平面

,又,∴,∴,

在直角中,,,故,∴,

,∴相似,故

,∴平面;

2)由,可知為正方形,

平面,故以為原點,,,所在方向分別為,軸的正半軸建立空間直角坐標系,

,,

,故,

顯然平面的一個法向量為,,,

設(shè)平面的一個法向量為,則,即,令,得

設(shè)二面角的大小為,則

故二面角的余弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學專著《九章算術(shù)》中有一個“兩鼠穿墻題”,其內(nèi)容為:“今有垣厚五尺,兩鼠對穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半.問何日相逢?各穿幾何?”如圖的程序框圖源于這個題目,執(zhí)行該程序框圖,若輸入x=20,則輸出的結(jié)果為( 。

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知單調(diào)遞增的等比數(shù)列滿足,且的等差中項.

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)若,對任意正數(shù)數(shù), 恒成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將邊長為的正方形沿對角線折起,使得平面平面,在折起后形成的三棱錐中,給出下列四個命題:①;②異面直線所成的角為;③二面角余弦值為;④三棱錐的體積是.其中正確命題的序號是___________.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的各項均為正數(shù),,且對任意,都有,數(shù)列n項的和.

1)若數(shù)列是等比數(shù)列,求的值和

2)若數(shù)列是等差數(shù)列,求的關(guān)系式;

3,當時,求證: 是一個常數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 下列結(jié)論錯誤的是

A. 命題:“若,則”的逆否命題是“若,則

B. ”是“”的充分不必要條件

C. 命題:“, ”的否定是“

D. 若“”為假命題,則均為假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為常數(shù)).曲線在點處的切線與軸平行.

() 的值;

(Ⅱ) 求函數(shù)的單調(diào)區(qū)間;

() 設(shè),其中的導函數(shù).

證明:對任意.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,圓的參數(shù)方程為為參數(shù)),以直角坐標系的原點為極點,軸正半軸為極軸建立極坐標系.

(1)求圓的極坐標方程;

(2)設(shè)曲線的極坐標方程為,曲線的極坐標方程為,求三條曲線,,所圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,,分別為側(cè)棱,的中點,則四面體的體積與四棱錐的體積之比為___________

查看答案和解析>>

同步練習冊答案