11.定義在R上的偶函數(shù),記f(x)的導數(shù)為f′(x),當x>0時,xf′(x)+2f(x)>1,則不等式f(1+2x)>($\frac{x}{1+2x}$)2•f(x)的解集是(-∞,-1)∪(-$\frac{1}{3}$,+∞).

分析 構(gòu)造函數(shù)g(x)=x2f(x),求出g(x)的導數(shù),得到函數(shù)的單調(diào)性,求出g(1+2x)>g(x),得到關(guān)于x的不等式,解出即可.

解答 解:令g(x)=x2f(x),
則g′(x)=x[xf′(x)+2f(x)],
當x>0時,xf′(x)+2f(x)>1,
故x>0時,g′(x)>0,g(x)遞增,
而f(-x)=f(x),
∴g(-x)=x2f(-x)=x2f(x)=g(x),
∴g(x)是偶函數(shù),
∴x<0時,g(x)遞減,
∵f(1+2x)>($\frac{x}{1+2x}$)2•f(x),
∴(1+2x)2f(1+2x)>x2f(x),
∴g(1+2x)>g(x),
∴|1+2x|>|x|,
解得:x>-$\frac{1}{3}$或x<-1,
故不等式的解集是(-∞,-1)∪(-$\frac{1}{3}$,+∞),
故答案為:(-∞,-1)∪(-$\frac{1}{3}$,+∞).

點評 本題考查了函數(shù)的單調(diào)性、奇偶性問題,考查導數(shù)的應用,構(gòu)造函數(shù)g(x)是解題的關(guān)鍵,本題是一道中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.在直角坐標系xOy中,以坐標原點O為極點,以x軸正半軸為極軸建立極坐標系.已知直線l:ρ=-$\frac{6}{3cosθ+4sinθ}$,曲線C:$\left\{\begin{array}{l}x=3+5cosα\\ y=5+5sinα\end{array}\right.$(α為參數(shù)).
(Ⅰ)將直線l化成直角方程,將曲線C化成極坐標方程;
(Ⅱ)若將直線l向上平移m個單位后與曲線C相切,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.某班50人的一次競賽成績的頻數(shù)分布如下:[60,70):3人,[70,80):16人,[80,90):24人,[90,100]:7人,利用組中可估計本次比賽該班的平均分為82.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在平面直角坐標系xOy中,已知向量$\overrightarrow{a}$=(2,0),$\overrightarrow$=(0,1).設(shè)向量$\overrightarrow{x}=\overrightarrow{a}$+(1+cosθ)$\overrightarrow$,$\overrightarrow{y}$=-k$\overrightarrow{a}$+sin2θ•$\overrightarrow$
(1)若$\overrightarrow{x}$∥$\overrightarrow{y}$,且θ=$\frac{π}{3}$求實數(shù)k的值;
(2)若$\overrightarrow{x}$⊥$\overrightarrow{y}$,且θ=$\frac{2π}{3}$,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.甲、乙兩位同學在高一年級的5次考試中,數(shù)學成績統(tǒng)計如莖葉圖所示,若甲、乙兩人的平均成績分別是$\overline{x_1},\overline{x_2}$,則下列敘述正確的是(  )
A.$\overline{x_1}$>$\overline{x_2}$,乙比甲成績穩(wěn)定B.$\overline{x_1}$>$\overline{x_2}$,甲比乙成績穩(wěn)定
C.$\overline{x_1}$<$\overline{x_2}$,乙比甲成績穩(wěn)定D.$\overline{x_1}$<$\overline{x_2}$,甲比乙成績穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知集合{a,$\frac{a}$,1}={0,a+b,a2},則a2+b2=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖,測量河對岸的塔高AB時,可以選與塔底B在同一水平面內(nèi)的兩個觀測點C與D,測得∠BCD=75°,∠BDC=45°,CD=30米,并在C測得塔頂A的仰角為60°,則塔的高度AB為( 。
A.30$\sqrt{2}$米B.30$\sqrt{6}$米C.15($\sqrt{3}$+1)米D.10$\sqrt{6}$米

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.函數(shù)y=cos(2x-$\frac{π}{4}$)的圖象的對稱軸方程為( 。
A.x=$\frac{kπ}{2}$+$\frac{π}{8}$,k∈ZB.x=kπ+$\frac{π}{8}$,k∈ZC.x=$\frac{kπ}{2}$+$\frac{3π}{8}$,k∈ZD.x=kπ+$\frac{3π}{8}$,k∈Z

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知f(x)=x2+2f′(2)x+3,則f′(2)的值是( 。
A.-3B.-4C.3D.4

查看答案和解析>>

同步練習冊答案