下面給出的關系式中正確的個數(shù)是(  )
0
a
=
0
  
a
b
=
b
a
  
a
2=|
a
|2   
④(
a
b
c
=
a
b
c
)   
⑤|
a
b
|≤
a
b
A、0B、1C、2D、3
考點:平面向量數(shù)量積的運算
專題:平面向量及應用
分析:
0
a
=0,即可判斷出;
②向量的數(shù)量積運算滿足交換律;
a
2=|
a
|2,不同的記法;
④由于
c
a
不一定共線,可知(
a
b
c
=
a
b
c
)不正確;
⑤由向量的數(shù)量積的運算性質即可得出.
解答: 解:①
0
a
=0,因此不正確;
a
b
=
b
a
,滿足交換律,正確;
a
2=|
a
|2,正確;
④由于
c
a
不一定共線,因此(
a
b
c
=
a
b
c
)不正確;
⑤由向量的數(shù)量積的運算性質即可得出:|
a
b
|≤
a
b

綜上可得:只有②③⑤正確.
故選:D.
點評:本題考查了數(shù)量積運算及其性質、向量共線定理等基礎知識與基本技能方法,考查了推理能力和理解能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

觀察以下各等式:sin25°+sin265°+sin2125°=
3
2
,sin230°+sin290°+sin2150°=
3
2
,猜想出反映一般規(guī)律的等式為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b均為正數(shù)且a+b=1,則使
1
a
+
4
b
≥c恒成立的c的取值范圍是( 。
A、c>1B、c≥0
C、c≤9D、c<-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

同時拋兩枚硬幣,則一枚朝上一枚朝下的事件發(fā)生的概率是( 。
A、
1
2
B、
1
3
C、
1
4
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-ax+(a-1)lnx(a>1),若對于任意x1,x2∈(0,+∞),x1≠x2,有
f(x 1)-f(x 2)
x1-x 2
>-1,則實數(shù)a的取值范圍為( 。
A、(1,4)
B、(1,4]
C、(1,5)
D、(1,5]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中,真命題是( 。
A、?x0∈R,|x0|≤0
B、?x∈R,ex>xe
C、a-b=0的充要條件是
a
b
=1
D、若p∧q為假,則p∨q為假

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
4x-4,x≤1
x2-4x+3,x>1
,若方程f(x)=m有三個不同的實數(shù)解,則實數(shù)m的取值范圍是( 。
A、-1<m<0
B、m>-1
C、m>0或m<-1
D、m<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某學生想測量學校的旗桿高度,如圖已知測得學生的身高和其影子長均為1.75m,旗桿的影子長為13.8m,則旗桿的高度約為( 。
A、15.55m
B、13.8m
C、12.05m
D、數(shù)據(jù)不夠不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sinx+cosx (x∈R)
(1)求f(
6
)的值;
(2)求f(x)在區(qū)間[-
π
2
,
π
2
]上的最大值和最小值及相應的x值.

查看答案和解析>>

同步練習冊答案