A. | 4 | B. | $\sqrt{6}$ | C. | 2$\sqrt{3}$ | D. | 3$\sqrt{2}$ |
分析 依題意可求得a,b及C,再由余弦定理即可求得c.
解答 解:∵在銳角△ABC中,邊a,b是方程x2-2$\sqrt{3}$x+2=0的兩根,
∴a+b=2$\sqrt{3}$,ab=2,
又2sin(A+B)-$\sqrt{3}$=0,sin(A+B)=sin(π-C)=sinC,
∴sinC=$\frac{\sqrt{3}}{2}$,又△ABC為銳角三角形,
∴C=$\frac{π}{3}$,cosC=$\frac{1}{2}$.
∴c2=a2+b2-2abcosC
=(a+b)2-2ab-2abcosC
=12-4-2×2×$\frac{1}{2}$
=6.
∴c=$\sqrt{6}$.
故選:B.
點評 本題考查兩角和與差的正弦函數(shù),著重考查余弦定理的應(yīng)用,考查分析與運算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 2 | 4 | 5 | 6 | 8 |
y | 3 | 4 | 6 | 5 | 7 |
不得禽流感 | 得禽流感 | 總計 | |
服藥 | |||
不服藥 | |||
總計 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 可導(dǎo)函數(shù)f(x)為增函數(shù)的充要條件是f'(x)>0. | |
B. | 若f(x)可導(dǎo),則f'(x0)=0是x0為f(x)的極值點的充要條件. | |
C. | f(x)在R上可導(dǎo),若?x1,x2∈R,且x1≠x2,$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>2017$,則?x∈R,f'(x)>2017. | |
D. | 若奇函數(shù)f(x)可導(dǎo),則其導(dǎo)函數(shù)f'(x)為偶函數(shù). |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com