【題目】若圓的方程為 (θ為參數(shù)),直線的方程為 (t為參數(shù)),則直線與圓的位置關(guān)系是(
A.相交過圓心
B.相交而不過圓心
C.相切
D.相離

【答案】B
【解析】解:把圓的參數(shù)方程化為普通方程得:(x+1)2+(y﹣3)2=4,

∴圓心坐標為(﹣1,3),半徑r=2,

把直線的參數(shù)方程化為普通方程得:y+1=3(x+1),即3x﹣y+2=0,

∴圓心到直線的距離d= = <r=2,

又圓心(﹣1,3)不在直線3x﹣y+2=0上,

則直線與圓的位置關(guān)系為相交而不過圓心.

故選:B

把圓的方程及直線的方程化為普通方程,然后利用點到直線的距離公式求出圓心到已知直線的距離d,判定發(fā)現(xiàn)d小于圓的半徑r,又圓心不在已知直線上,則直線與圓的位置關(guān)系為相交而不過圓心.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)實數(shù)x、y滿足2x+y=9.
(1)若|8﹣y|≤x+3,求x的取值范圍;
(2)若x>0,y>0,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)z1 , z2是復(fù)數(shù),給出下列四個命題: ①若|z1﹣z2|=0,則 = ②若z1= ,則 =z2
③若|z1|=|z2|,則z1 =z2 ④若|z1|=|z2|,則z12=z22
其中真命題的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】自點A(-3,3)發(fā)出的光線L射到x軸上,被x軸反射,其反射光線所在直線與圓x2+y2-4x-4y+7=0相切,求光線L所在直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax﹣(a+1)ln(x+1),其中a>0.
(1)求f(x)的單調(diào)區(qū)間;
(2)設(shè)f(x)的最小值為g(a),求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】活水圍網(wǎng)養(yǎng)魚技術(shù)具有養(yǎng)密度高、經(jīng)濟效益好的特點研究表明:活水圍網(wǎng)養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù)不超過4(尾/立方米)時,的值為(千克/年);當時,的一次函數(shù);當達到(尾/立方米)時,因缺氧等原因,的值為(千克/年)

(1)當時,求函數(shù)的表達式;

(2)當養(yǎng)殖密度為多大時,魚的年生長量(單位:千克/立方米)可以達到最大,并求出最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在四棱錐中,底面是矩形,且,平面,、分別是線段的中點

1證明:

2在線段上是否存在點,使得平面,若存在,確定的位置;若不存在,說明理由

3與平面所成的角為,求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的三個內(nèi)角A,B,C所對應(yīng)的邊分別為a,b,c,且滿足bcosC+ c=a.
(1)求△ABC的內(nèi)角B的大小;
(2)若△ABC的面積S= b2 , 試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2 sin(x+)。

(1)若點P(1,-)在角的終邊上,求:cos和f(-)的值;

(2)若x [ ],求f(x)的值域。

查看答案和解析>>

同步練習冊答案