2.已知集合A={x∈Z|-1≤x≤2},B={y|y=2x},則A∩B=( 。
A.B.[0,2]C.(0,2]D.{1,2}

分析 化簡集合A,B,注意運用列舉法和指數(shù)函數(shù)的值域,再由交集的定義,即可得到.

解答 解:集合A={x∈Z|-1≤x≤2}={-1,0,1,2}
B={y|y=2x}={y|y>0},
則A∩B={1,2}.
故選:D.

點評 本題考查集合的運算,主要是交集的運算,注意運用指數(shù)函數(shù)的值域.屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.直線$\sqrt{3}x+y-2=0$的傾斜角為( 。
A.30oB.150oC.60oD.120o

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.如圖,在四面體ABCD中,AB=CD=2,AB與CD所成的角為45°,點E,F(xiàn),G,H分別在棱EC,BD,BC,AC上,若直線AB,CD都平行于平面EFGH,則四邊形EFGH面積的最大值是1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若集合A={1,2,3},B={0,1,2},則A∩B=( 。
A.{0,1,2,3}B.{0,1,2}C.{1,2}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知:f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],且a+b≠0時,有$\frac{f(a)+f(b)}{a+b}$>0恒成立.
(Ⅰ)用定義證明函數(shù)f(x)在[-1,1]上是增函數(shù);
(Ⅱ)解不等式:$f(x+\frac{1}{2})$<f(1-x);
(Ⅲ)若f(x)≤m2-2m+1對所有x∈[-1,1]恒成立,求:實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若f(x)=5cosx,則f′($\frac{π}{2}$)=-5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.(1)求不等式的解集:-x2+4x+5<0
(2)解關于x的不等式:x2+(1-a)x-a<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.2011年,國際數(shù)學協(xié)會正式宣布,將每年的3月14日設為國際數(shù)學節(jié),來源是中國古代數(shù)學家祖沖之的圓周率,為慶祝該節(jié)日,某校舉辦的數(shù)學嘉年華活動中,設計了如下有獎闖關游戲:參賽選手按第一關、第二關、第三關的順序依次闖關,若闖關成功,分別獲得5個學豆、10個學豆、20個學豆的獎勵,游戲還規(guī)定,當選手闖過一關后,可以選擇帶走相應的學豆,結束游戲;也可以選擇繼續(xù)闖下一關,若有任何一關沒有闖關成功,則全部學豆歸零,游戲結束.設選手甲第一關、第二關、第三關的概率分別為$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$,選手選擇繼續(xù)闖關的概率均為$\frac{1}{2}$,且各關之間闖關成功互不影響
(1)求選手獲得5個學豆的概率;
(2)求選手甲第一關闖關成功且所得學豆為零的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.命題“若x2<2,則$|x|<\sqrt{2}$”的逆否命題是“若|x|≥$\sqrt{2}$,則x2≥2”.

查看答案和解析>>

同步練習冊答案