7.已知函數(shù)f(x+1)=$\frac{f(x)}{1+f(x)}$,且f(1)=1,則f(10)=$\frac{1}{10}$.

分析 由題意可求得f(2)=$\frac{f(1)}{1+f(1)}$=$\frac{1}{2}$,f(3)=$\frac{f(2)}{1+f(2)}$=$\frac{1}{3}$,f(4)=$\frac{1}{4}$,從而歸納出f(10)=$\frac{1}{10}$.

解答 解:∵f(x+1)=$\frac{f(x)}{1+f(x)}$,且f(1)=1,
∴f(2)=$\frac{f(1)}{1+f(1)}$=$\frac{1}{2}$,
f(3)=$\frac{f(2)}{1+f(2)}$=$\frac{1}{3}$,
f(4)=$\frac{1}{4}$,
…,
f(10)=$\frac{1}{10}$,
故答案為:$\frac{1}{10}$.

點(diǎn)評(píng) 本題考查了遞推關(guān)系在函數(shù)中的應(yīng)用,同時(shí)考查了數(shù)學(xué)歸納法的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)f(x)是定義在R上的偶函數(shù),對(duì)任意x∈R,都有f(x+4)=f(x),且當(dāng)x∈[-2,0]時(shí),f(x)=($\frac{1}{3}$)x-6.若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0(a>1)恰有3個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是$({\root{3}{4},2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若銳角α、β滿足cosα=$\frac{4}{5}$,cos(α+β)=$\frac{3}{5}$,sinβ=$\frac{7}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.等邊三角形ABC的邊長為1,$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{CA}$=$\overrightarrow$,$\overrightarrow{AB}$=$\overrightarrow{c}$,那么$\overrightarrow{a}$•$\overrightarrow$+$\overrightarrow$•$\overrightarrow{c}$+$\overrightarrow{c}$•$\overrightarrow{a}$等于-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}2x+3,x≥4\\{2^{x-1}},x<4\end{array}$,則f[f(3)]=11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.等差數(shù)列{an}的公差為d,關(guān)于x的不等式${a_1}{x^2}+({\fracyo4besl{2}-{a_1}})x+c≥0$的解集為$[{\frac{1}{3},\frac{4}{5}}]$,則使數(shù)列{an}的前n項(xiàng)和Sn最小的正整數(shù)n的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.(3x-1)7=a0+a1x+a2x2+…+a7x7,則|a1|+|a2|+|a3|+|a4|+|a5|+|a6|+|a7|=47

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知f(x)=|x-1|-|x|,設(shè)u=f($\frac{5}{16}$),v=f(u),s=f(v),則s的值為( 。
A.$\frac{3}{8}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知當(dāng)x∈(-$\frac{π}{6}$,π)時(shí),不等式cos2x-2asinx+6a-1>0恒成立,則實(shí)數(shù)a的取值范圍是a>$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案