18.若銳角α、β滿足cosα=$\frac{4}{5}$,cos(α+β)=$\frac{3}{5}$,sinβ=$\frac{7}{25}$.

分析 由已知及角的范圍,利用同角三角函數(shù)基本關(guān)系式可求sinα,sin(α+β)的值,利用兩角差的正弦函數(shù)公式即可化簡求值.

解答 解:∵銳角α、β滿足cosα=$\frac{4}{5}$,cos(α+β)=$\frac{3}{5}$,
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{3}{5}$,
∴α+β∈(0,π),sin(α+β)=$\sqrt{1-co{s}^{2}(α+β)}$=$\frac{4}{5}$,
∴sinβ=sin[(α+β)-α]=sin(α+β)cosα-cos(α+β)sinα=$\frac{4}{5}$×$\frac{4}{5}$-$\frac{3}{5}×\frac{3}{5}$=$\frac{7}{25}$.
故答案為:$\frac{7}{25}$.

點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角差的正弦函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若z=3-4i(i是虛數(shù)單位),則|z|=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.計(jì)算:${∫}_{0}^{1}$x3dx=(  )
A.1B.0C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.i是虛數(shù)單位,復(fù)數(shù)$\frac{7+i}{3+4i}$=(  )
A.$\frac{17}{25}$+$\frac{31}{25}$iB.-1+iC.1-iD.-$\frac{17}{7}$+$\frac{25}{7}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.兩條平行直線3x-4y+2=0與6x-my+14=0之間的距離等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知(1-2x)7=a0+a1x+a2x2+…+a7x7,(a0+a2+a4+a62-(a1+a3+a5+a72值為-2187.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)=x2+bx+c是偶函數(shù),則b=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x+1)=$\frac{f(x)}{1+f(x)}$,且f(1)=1,則f(10)=$\frac{1}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,BC邊上的高為$\frac{\sqrt{3}}{6}$BC,則$\frac{sinC}{sinB}$+$\frac{sinB}{sinC}$的最大值為( 。
A.4B.5C.6D.4$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案