【題目】兩圓x2+y2+2ax+a2﹣4=0和x2+y2﹣4by﹣1+4b2=0恰有三條公切線,若a∈R,b∈R,且ab≠0,則 的最小值為(
A.
B.
C.1
D.3

【答案】C
【解析】解:由題意可得 兩圓相外切,兩圓的標準方程分別為 (x+a)2+y2=4,x2+(y﹣2b)2=1,
圓心分別為(﹣a,0),(0,2b),半徑分別為 2和1,故有 =3,∴a2+4b2=9,
=1,∴ = + = + +
+2 =1,當且僅當 = 時,等號成立,
故選 C.
【考點精析】解答此題的關鍵在于理解基本不等式在最值問題中的應用的相關知識,掌握用基本不等式求最值時(積定和最小,和定積最大),要注意滿足三個條件“一正、二定、三相等”.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中

(Ⅰ)求上的單調(diào)區(qū)間;

(Ⅱ)求為自然對數(shù)的底數(shù))上的最大值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)fx=ax2lnx.

)若fx)在x=2時有極值,求實數(shù)a的值和fx)的極大值;

)若fx)在定義域上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2-(a+2)x+ln x.

(1)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;

(2)當a>0時,若f(x)在區(qū)間[1,e]上的最小值為-2,求a的取值范圍;

(3)若對任意x1,x2(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)f(x)=x2+bx+4
(1)若f(x)為偶函數(shù),求b的值;
(2)若f(x)有零點,求b的取值范圍;
(3)求f(x)在區(qū)間[﹣1,1]上的最大值g(b).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù),﹣π<α<0),曲線C2的參數(shù)方程為 (t為參數(shù)),以O為極點,x軸的正半軸為極軸建立極坐標系.

(1)求曲線C1的極坐標方程和曲線C2的普通方程;

(2射線θ=﹣ 與曲線C1的交點為P,與曲線C2的交點為Q,求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD所在的平面和平面互相垂直,等腰梯形中, , , , 分別為的中點, 為底面的重心.

(Ⅰ)求證: ∥平面

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列的前項和為,且.令.

(1)求的通項公式;

(2)若,且數(shù)列的前項和為,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,函數(shù).

1)證明上僅有一個零點;

2)若曲線在點處的切線與軸平行,且在點處的切線與直線平行,(O是坐標原點),證明:

查看答案和解析>>

同步練習冊答案