【題目】設(shè)數(shù)列的前項(xiàng)和為,且.令.
(1)求的通項(xiàng)公式;
(2)若,且數(shù)列的前項(xiàng)和為,求.
【答案】(1)(2)
【解析】試題分析:(1)由可得,兩式相減可得,利用“累乘法”即可得的通項(xiàng)公式,進(jìn)而可求的通項(xiàng)公式;(2)利用(1)可得數(shù)列的通項(xiàng)公式, ,根據(jù)錯(cuò)位相減法可得結(jié)果.
試題解析:(1)當(dāng)時(shí), 得
∴.
∵,∴(),.
(2),
所以
作差得,
∴.
【 方法點(diǎn)睛】本題主要考查由遞推公式求數(shù)列的通項(xiàng)以及錯(cuò)位相減法求數(shù)列的的前 項(xiàng)和,屬于中檔題.一般地,如果數(shù)列是等差數(shù)列, 是等比數(shù)列,求數(shù)列的前項(xiàng)和時(shí),可采用“錯(cuò)位相減法”求和,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解, 在寫出“”與“” 的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對(duì)齊”以便下一步準(zhǔn)確寫出“”的表達(dá)式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),a>0,且a≠1.
(1)若1是關(guān)于x的方程f(x)﹣g(x)=0的一個(gè)解,求t的值;
(2)當(dāng)0<a<1且t=﹣1時(shí),解不等式f(x)≤g(x);
(3)若函數(shù)F(x)=af(x)+tx2﹣2t+1在區(qū)間(﹣1,2]上有零點(diǎn),求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】?jī)蓤Ax2+y2+2ax+a2﹣4=0和x2+y2﹣4by﹣1+4b2=0恰有三條公切線,若a∈R,b∈R,且ab≠0,則 的最小值為( )
A.
B.
C.1
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(﹣4,4)、B(4,4),直線AM與BM相交于點(diǎn)M,且直線AM的斜率與直線BM的斜率之差為﹣2,點(diǎn)M的軌跡為曲線C.
(1)求曲線C 的軌跡方程;
(2)Q為直線y=﹣1上的動(dòng)點(diǎn),過Q做曲線C的切線,切點(diǎn)分別為D、E,求△QDE的面積S的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在長(zhǎng)方體ABCD﹣A1B1C1D1中,E、M、N分別是BC、AE、D1C的中點(diǎn),AD=AA1 , AB=2AD
(Ⅰ)證明:MN∥平面ADD1A1
(Ⅱ)求直線AD與平面DMN所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x﹣1.
(1)求f(3)+f(﹣1);
(2)求f(x)的解析式;
(3)若x∈A,f(x)∈[﹣7,3],求區(qū)間A.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知, 分別是中點(diǎn),弧的半徑分別為,點(diǎn)平分弧,過點(diǎn)作弧的切線分別交于點(diǎn).四邊形為矩形,其中點(diǎn)在線段上,點(diǎn)在弧上,延長(zhǎng)與交于點(diǎn).設(shè),矩形的面積為.
(1)求的解析式并求其定義域;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以T=4為周期的函數(shù)f(x)= ,其中m>0.若方程3f(x)=x恰有5個(gè)實(shí)數(shù)解,則m的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)滿足:
①對(duì)任意實(shí)數(shù)m,n都有f(m+n)+f(m﹣n)=2f(m)f(n);
②對(duì)任意m∈R,都有f(1+m)=f(1﹣m)恒成立;
③f(x)不恒為0,且當(dāng)0<x<1時(shí),f(x)<1.
(1)求f(0),f(1)的值;
(2)判斷函數(shù)f(x)的奇偶性,并給出你的證明;
(3)定義:“若存在非零常數(shù)T,使得對(duì)函數(shù)g(x)定義域中的任意一個(gè)x,均有g(shù)(x+T)=g(x),則稱g(x)為以T為周期的周期函數(shù)”.試證明:函數(shù)f(x)為周期函數(shù),并求出 的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com