13.已知實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x≥1\\ y≥x-1\\ x+y≤4\end{array}\right.$,目標(biāo)函數(shù)z=x+y,則當(dāng)z=3時,x2+y2的取值范圍是(  )
A.$[\frac{{3\sqrt{2}}}{2},\sqrt{5}]$B.$[\frac{{3\sqrt{2}}}{2},5]$C.$[\frac{9}{2},5]$D.$[\sqrt{5},\frac{9}{2}]$

分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,即可得到結(jié)論

解答 解:作出不等式對應(yīng)的平面區(qū)域,
當(dāng)目標(biāo)函數(shù)z=x+y,則當(dāng)z=3時,即x+y=3時,作出此時的直線,
則x2+y2的幾何意義為動點P(x,y)到原點的距離的平方,
當(dāng)直線x+y=3與圓x2+y2=r2相切時,距離最小,
即原點到直線x+y=3的距離d=$\frac{3}{\sqrt{2}}$,即最小值為d2=$\frac{9}{2}$,
當(dāng)直線x+y=3與圓x2+y2=r2相交與點B或C時,距離最大,
由$\left\{\begin{array}{l}{x=1}\\{x+y=3}\end{array}\right.$,解得x=1,y=2,即B(1,2),
由$\left\{\begin{array}{l}{x+y=3}\\{x-y=1}\end{array}\right.$,解得x=2,y=1,即C(2,1)
此時r2=x2+y2=22+12=5,
故選:C.

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在下列區(qū)間中,函數(shù)f(x)=lgx-$\frac{1}{x}$的零點所在的區(qū)間是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.由點P(3,4)引圓x2+y2=16的切線長是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x3-3ax(a∈R).
(Ⅰ)求曲線y=f(x)在點(0,f(0))處的切線方程; 
(Ⅱ)若函數(shù)f(x)在區(qū)間(-1,2)上僅有一個極值點,求實數(shù)a的取值范圍;
(Ⅲ)若a>1,且方程f(x)=a-x在區(qū)間[-a,0]上有兩個不相等的實數(shù)根,求實數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖是函數(shù)f(x)=cos(πx+φ)(0<φ<$\frac{π}{2}$)的部分圖象,則f(3x0)=-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知p1:直線l1:x-y-1=0與直線l2:x+ay-2=0平行,q:a=-1,則p是q的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=$\sqrt{x+1}$+lg(1-x)的定義域為( 。
A.[-1,1]B.[-1,+∞)C.[-1,1)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列雙曲線中,焦點在x軸上且漸近線方程為y=±$\frac{1}{4}$x的是( 。
A.x2-$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$-y2=1C.$\frac{{y}^{2}}{16}$-x2=1D.y2-$\frac{{x}^{2}}{16}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={-3,-2,-1,0,1,2},B={x|x2≤3},則A∩B=.(  )
A.{0,2}B.{-1,0,1}C.{-3,-2,-1,0,1,2}D.[0,2]

查看答案和解析>>

同步練習(xí)冊答案