7.已知:函數(shù)f(x)=sinx-cosx,且f'(x)=2f(x),則$\frac{{1+{{sin}^2}x}}{{{{cos}^2}x-sin2x}}$=( 。
A.$-\frac{19}{5}$B.$\frac{19}{5}$C.$\frac{11}{3}$D.$-\frac{11}{3}$

分析 利用三角函數(shù)的導(dǎo)數(shù)求得tanx的值,再利用同角三角函數(shù)的基本關(guān)系求得要求式子的值.

解答 解:∵函數(shù)f(x)=sinx-cosx,且f'(x)=2f(x),∴cosx+sinx=2sinx-2cosx,即sinx=3cosx,即tanx=3,
則$\frac{{1+{{sin}^2}x}}{{{{cos}^2}x-sin2x}}$=$\frac{{2sin}^{2}x{+cos}^{2}x}{{cos}^{2}x-2sinxcosx}$=$\frac{{2tan}^{2}x+1}{1-2tanx}$=$\frac{18+1}{1-6}$=-$\frac{19}{5}$,
故選:A.

點(diǎn)評 本題主要考查同角三角函數(shù)的基本關(guān)系、三角函數(shù)的導(dǎo)數(shù),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,sinA=$\frac{5}{13}$,cosB=$\frac{3}{5}$,求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知全集U={1,2,3,4,5,6},集合A={1,2,4},B={2,4,6},則A∩(∁UB)=( 。
A.{1}B.{2}C.{4}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖,棱長為1的正方體ABCD-A1B1C1D1中,M為線段A1B上的動點(diǎn),則下列結(jié)論正確的有①②
①三棱錐M-DCC1的體積為定值
②DC1⊥D1M
③∠AMD1的最大值為90°
④AM+MD1的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若函數(shù)y=f(x)滿足f(a+x)+f(a-x)=2b(其中a,b不同時為0),則稱函數(shù)y=f(x)為“準(zhǔn)奇函數(shù)”,稱點(diǎn)(a,b)為函數(shù)f(x)的“中心點(diǎn)”.現(xiàn)有如下命題:
①函數(shù)f(x)=sinx+1是準(zhǔn)奇函數(shù);
②若準(zhǔn)奇函數(shù)y=f(x)在R上的“中心點(diǎn)”為(a,f(a)),則函數(shù)F(x)=f(x+a)-f(a)為R上的奇函數(shù);
③已知函數(shù)$f(x)=sin({2x-\frac{π}{3}})+2$是準(zhǔn)奇函數(shù),則它的“中心點(diǎn)”為$({\frac{π}{3}+kπ,2})$
④已知函數(shù)f(x)=x3-3x2+6x-2是準(zhǔn)奇函數(shù),則它的“中心點(diǎn)”為(1,2);
其中正確的命題是①②④(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在△ABC中,角A,B,C分別對應(yīng)邊a,b,c,S為△ABC的面積,已知a=4,b=5,C=2A,則c=6,S=$\frac{15\sqrt{7}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若f(x)=log3x,則f′(3)等于(  )
A.$\frac{1}{3}$B.ln 3C.$\frac{1}{3ln3}$D.$\frac{1}{ln3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=x3-3x,
(1)過點(diǎn)P(2,-6)作曲線y=f(x)的切線,求此切線的方程;
(2)若關(guān)于x的方程f(x)-m=0有三個不同的實(shí)數(shù)根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)實(shí)數(shù)x,y滿足$\left\{{\begin{array}{l}{x+y-4≤0}\\{x-y≥0}\\{y≥-1}\end{array}}\right.$,則z=2x+y的最大值與最小值的和6.

查看答案和解析>>

同步練習(xí)冊答案