17.設(shè)實(shí)數(shù)x,y滿足$\left\{{\begin{array}{l}{x+y-4≤0}\\{x-y≥0}\\{y≥-1}\end{array}}\right.$,則z=2x+y的最大值與最小值的和6.

分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合進(jìn)行求解即可.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,
由圖象可知當(dāng)直線y=-2x+z經(jīng)過點(diǎn)C時,直線y=-2x+z的截距最大,
此時z最大.
由$\left\{\begin{array}{l}{x+y-4=0}\\{y=-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=5}\\{y=-1}\end{array}\right.$,即C(5,-1),
代入目標(biāo)函數(shù)z=2x+y得z=2×5-1=9.
即目標(biāo)函數(shù)z=2x+y的最大值為9.
當(dāng)直線y=-2x+z經(jīng)過點(diǎn)B時,直線y=-2x+z的截距最小,
此時z最小.
由$\left\{\begin{array}{l}{x-y=0}\\{y=-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-1}\\{y=-1}\end{array}\right.$,即B(-1,-1),
代入目標(biāo)函數(shù)z=2x+y得z=-1×2-1=-3.
即目標(biāo)函數(shù)z=2x+y的最小值為-3.
則最大值與最小值的和為9-3=6,
故答案為:6.

點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知:函數(shù)f(x)=sinx-cosx,且f'(x)=2f(x),則$\frac{{1+{{sin}^2}x}}{{{{cos}^2}x-sin2x}}$=(  )
A.$-\frac{19}{5}$B.$\frac{19}{5}$C.$\frac{11}{3}$D.$-\frac{11}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.不等式x+y-1>0表示的區(qū)域在直線x+y-1=0的( 。
A.左上方B.左下方C.右上方D.右下方

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知$\overrightarrow{a}$=(2$\sqrt{3}$sinx,sinx+cosx),$\overrightarrow$=(cosx,sinx-cosx),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,cosA=$\frac{2b-a}{2c}$,若f(A)-m>0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,半圓C的極坐標(biāo)方程為$ρ=2sinθ,θ∈[{0,\frac{π}{2}}]$.
(1)求C的參數(shù)方程;
(2)設(shè)點(diǎn)D在C上,C在D處的切線與直線$l:x-\sqrt{3}y-2=0$垂直,根據(jù)(1)中的參數(shù)方程,確定點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,在正方體ABCD-A1B1C1D1中,已知E為棱CC1上的動點(diǎn).
(1)求證:A1E⊥BD;
(2)是否存在這樣的E點(diǎn),使得平面A1BD⊥平面EBD?若存在,請找出這樣的E點(diǎn);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知點(diǎn)A(x1,y1),B(x2,y2)是函數(shù)y=sinx(-π<x<0)上的兩個不同點(diǎn),且x1<x2,則對于下列四個不等式:
①$\frac{{sin{x_1}}}{x_1}<\frac{{sin{x_2}}}{x_2}$;
②sinx1<sinx2;
③$\frac{1}{2}({sin{x_1}+sin{x_2}})>sin\frac{{{x_1}+{x_2}}}{2}$;
④$sin\frac{x_1}{2}>sin\frac{x_2}{2}$.
其中正確不等式的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.關(guān)于x的方程( k-2 )x2-( 3k+6 )x+6k=0有兩個負(fù)根,則k的取值范圍是$[{-\frac{2}{5},0})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若α,β為銳角,tan(α+β)=3,$tanβ=\frac{1}{2}$,則α的值為(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{12}$

查看答案和解析>>

同步練習(xí)冊答案