13.不等式組$\left\{\begin{array}{l}y-1≥0\\ x-y+2≥0\\ x+4y-8≤0\end{array}\right.$表示的平面區(qū)域為Ω,直線x=a(a>1)將Ω分成面積之比為1:4的兩部分,則目標函數(shù)z=ax+y的最大值為9.

分析 由約束條件作出可行域,結(jié)合已知求得a,得到線性目標函數(shù),化為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}y-1≥0\\ x-y+2≥0\\ x+4y-8≤0\end{array}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{y=1}\\{x+4y-8=0}\end{array}\right.$,解得A(4,1).
聯(lián)立$\left\{\begin{array}{l}{y=1}\\{x-y+2=0}\end{array}\right.$,解得B(-1,1).
∵直線x=a(a>1)將Ω分成面積之比為1:4的兩部分,
∴$\frac{1}{2}(4-a)•(\frac{8-a}{4}-1)=\frac{5}{2}×\frac{1}{5}=\frac{1}{2}$,解得a=2.
∴目標函數(shù)z=ax+y=2x+y,化為y=-2x+z,由圖可知,
當直線y=-2x+z過A時,直線在y軸上的截距最大,z有最大值為9.
故答案為:9.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{|x|},}&{x≤\frac{1}{2}}\\{\sqrt{2}|lo{g}_{2}x|,}&{x>\frac{1}{2}}\end{array}\right.$,方程f(x)-c=0有四個根,則實數(shù)c的取值范圍是(  )
A.[1,$\sqrt{2}$]B.($\frac{\sqrt{2}}{2}$,1)C.($\frac{\sqrt{2}}{2}$,$\sqrt{2}$)D.(1,$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.給出下列幾個命題:
①命題p:任意x∈R,都有cosx≤1,則?p:存在x0∈R,使得cosx0≤1;
②已知ξ~N(μ,δ2),若P(ξ>4)=P(ξ<2)成立,且P(ξ≤0)=0.2,則P(0<ξ<2)=0.6;
③空間任意一點O和三點A,B,C,則$\overrightarrow{OA}=3\overrightarrow{OB}=2\overrightarrow{OC}$是A,B,C三點共線的充分不必要條件;
④線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$對應(yīng)的直線一定經(jīng)過其樣本數(shù)據(jù)點(x1,y1),(x2,y2),…,(xn,yn)中的一個.
其中正確的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知向量$\overrightarrow{a}$=(2,-n),$\overrightarrow$=(Sn,n+1),n∈N*,其中Sn是數(shù)列{an}的前n項和,若$\overrightarrow{a}$⊥$\overrightarrow$,則數(shù)列{$\frac{{a}_{n}}{{a}_{n+1}{a}_{n+4}}$}的最大項的值為( 。
A.$\frac{1}{9}$B.$\frac{2}{3}$C.-$\frac{1}{9}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在△ABC中,G點為△ABC的重心,a,b,c分別為角A,B,C的對邊,若b2+c2+bc=a2,且S△ABC=2$\sqrt{3}$,則|AG|的最小值為$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.為推行“新課堂”教學(xué)法,某數(shù)學(xué)老師分別用原傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個平行班進行教學(xué)實驗,為了解教學(xué)效果,期中考試后,分別從兩個班級中各隨機抽取20名學(xué)生的成績進行統(tǒng)計,作出的莖葉圖如圖.記成績不低于70分者為“成績優(yōu)良”.
(1)分別計算甲、乙兩班20個樣本中,數(shù)學(xué)分數(shù)前十的平均分;
(2)由以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為“成績優(yōu)良與教學(xué)方式有關(guān)”?
甲班乙班總計
成績優(yōu)良
成績不優(yōu)良
總計
附:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)}$.(n=a+b+c+d)
獨立性檢驗臨界表
P(K2≥0)0.100.050.0250.010
K02.7063.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)f(x)=$|\begin{array}{l}{1}&{1}&{1}\\{x}&{-1}&{1}\\{{x}^{2}}&{2}&{1}\end{array}|$(x∈R),則方程f(x)=0的解集為{-1,1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知命題P:x2-2x-3≥0,命題Q:|1-$\frac{x}{2}$|<1.若P是真命題且Q是假命題,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.△ABC中,$tanA=\frac{3}{4}$,則cos2A等于( 。
A.$\frac{18}{25}$B.$-\frac{18}{25}$C.$-\frac{7}{25}$D.$\frac{7}{25}$

查看答案和解析>>

同步練習(xí)冊答案