=   
【答案】分析:首先求極限發(fā)現(xiàn)式子上面各項是等差數(shù)列,即可求和,得到容易求得它的極限為2,即為答案.
解答:解:==
所以=
故答案為2.
點評:此題主要考查極限及其運算的問題,其中涉及到等差數(shù)列的求和問題,屬于綜合題,有一定的計算量,為中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011年山東省實驗中學(xué)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:選擇題

底面邊長為,各側(cè)面均為直角三角形的正三棱錐的四個頂點都在同一球面上,則此球的表面積為( )
A.4π
B.
C.2π
D.3π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高考數(shù)學(xué)一輪復(fù)習(xí)必備(第92-93課時):第十二章 極限-數(shù)列的極限、數(shù)學(xué)歸納法(解析版) 題型:解答題

若數(shù)列{an}滿足對任意的n有:Sn=,試問該數(shù)列是怎樣的數(shù)列?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高考數(shù)學(xué)一輪復(fù)習(xí)必備(第92-93課時):第十二章 極限-數(shù)列的極限、數(shù)學(xué)歸納法(解析版) 題型:解答題

歸納原理分別探求:
(1)凸n邊形的內(nèi)角和f(n)=    ;
(2)凸n邊形的對角線條數(shù)f(n)=    ;
(3)平面內(nèi)n個圓,其中每兩個圓都相交于兩點,且任意三個圓不相交于同一點,則該n個圓分平面區(qū)域數(shù)f(n)=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高考數(shù)學(xué)一輪復(fù)習(xí)必備(第92-93課時):第十二章 極限-數(shù)列的極限、數(shù)學(xué)歸納法(解析版) 題型:解答題

用數(shù)學(xué)歸納法證明2n>n2(n∈N,n≥1),則第一步應(yīng)驗證   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高考數(shù)學(xué)一輪復(fù)習(xí)必備(第92-93課時):第十二章 極限-數(shù)列的極限、數(shù)學(xué)歸納法(解析版) 題型:選擇題

的值為( )
A.0
B.1
C.2
D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市長寧區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

(文)已知點P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n為正整數(shù))都在函數(shù)y=ax(a>0,a≠1)的圖象上,其中{an}是以1為首項,2為公差的等差數(shù)列.
(1)求數(shù)列{an}的通項公式,并證明數(shù)列{bn}是等比數(shù)列;
(2)設(shè)數(shù)列{bn}的前n項的和Sn,求;
(3)設(shè)Qn(an,0),當(dāng)時,問△OPnQn的面積是否存在最大值?若存在,求出最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市長寧區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

不等式的解集為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省高考數(shù)學(xué)第三輪復(fù)習(xí)精編模擬試卷09(理科)(解析版) 題型:選擇題

如果n是正偶數(shù),則Cn+Cn2+…+Cnn-2+Cnn=( )
A.2n
B.2n-1
C.2n-2
D.(n-1)2n-1

查看答案和解析>>

同步練習(xí)冊答案