已知矩陣,A=
1
1
,向量
β
=
2
1
,求向量
α
,使得A2
α
=
β
考點(diǎn):特征值、特征向量的應(yīng)用
專題:矩陣和變換
分析:先設(shè)出向量
α
,直接代入計(jì)算即可.
解答: 解:設(shè)
α
=
x
y
,由A2
α
=
β
可知:
34
23
x
y
=
2
1

3x+4y=2
2x+3y=1
,
解得
x=2
y=-1

所以
α
=
2
-1
點(diǎn)評(píng):本題考查矩陣的簡(jiǎn)單計(jì)算,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某企業(yè)擬用10萬(wàn)元投資甲、乙兩種商品.已知各投入x萬(wàn)元,甲、乙兩種商品可分別獲得y1,y2萬(wàn)元的利潤(rùn),利潤(rùn)曲線P1,P2如圖所示.問(wèn)怎樣分配投資額,才能使投資獲得最大利潤(rùn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
1-2x
2x
在區(qū)間[1,2]上的最大值
 
,最小值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心為坐標(biāo)原點(diǎn)O,其中一個(gè)焦點(diǎn)坐標(biāo)為(
2
,0),離心率為
6
3
,離心率為
6
3

(1)求橢圓C的方程;
(2)已知向量
OB
=(0,-1),是否存在斜率為k(k≠0)的直線l.l與曲線C相交于M,N兩點(diǎn),使向量
BM
與向量
BN
的夾角為60°,且|
BM
|=|
BN
|?若存在,求出k值,并寫(xiě)出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
,
b
滿足(
.
a
+2
b
)•(
a
-
b
)=-6
,且|
a
|=1,|
b
|=2
,則
a
b
上的投影為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,側(cè)面PAD與底面ABCD互相垂直,且所有棱長(zhǎng)均為2,AC∩BD=O.
(Ⅰ)若AB⊥AD,過(guò)點(diǎn)O作平面α與平面PBC平行,求所得截面的面積;
(Ⅱ)若BD=2,二面角A-PC-B的大小為θ,求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

投擲六個(gè)面分別記有1,2,2,3,3,3的兩顆骰子
(1)求所出現(xiàn)的點(diǎn)數(shù)均為2的概率;
(2)求所出現(xiàn)的點(diǎn)數(shù)之和為4的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)對(duì)任意的實(shí)數(shù)m,n都有:f(m+n)=f(m)+f(n)-1,且當(dāng)x>0時(shí),有f(x)>1.
(1)求f(0);
(2)求證:f(x)在R上為增函數(shù);
(3)若f(1)=2,且關(guān)于x的不等式f(ax-2)+f(x-x2)<3對(duì)任意的x∈[1,+∞)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=loga(x-3)-4恒過(guò)點(diǎn)
 

查看答案和解析>>

同步練習(xí)冊(cè)答案