已知點A(3,1),在直線x-y=0的x軸上分別求一點M和N,使△AMN的周長最小,并求出周長的最小值.
考點:兩點間距離公式的應(yīng)用
專題:直線與圓
分析:借助于對稱點將三角形周長轉(zhuǎn)化為點A(3,1)關(guān)于直線x-y=0的對稱點(1,3)和點A關(guān)于x軸的對稱點(3,-1)兩點間距離求解即可.
解答: 解:點A(3,1)關(guān)于直線x-y=0的對稱點是B(1,3),
點A關(guān)于x軸的對稱點是C(3,-1).
如圖
根據(jù)對稱性可知AM=BM,AN=CN,
∴△AMN周長為BM+MN+CN≥BC=
(3-1)2+(-1-3)2
=2
5

即點M,N分別為BC與直線y=x,x軸交點時△AMN的周長最小,
周長的最小值為:2
5
點評:本題考查對稱性的靈活應(yīng)用,以及距離公式的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線C的參數(shù)方程式:
x=4t2
y=4t
(t是參數(shù)),直線l的極坐標(biāo)方程式2pcosθ+psinθ-4=0.
(1)將曲線C的參數(shù)方程化為普通方程,將直線l的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若直線l與曲線C交于A,B,求|AB|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若
sinA
a
=
cosB
b
=
cosC
c
,則△ABC中最長的邊是( 。
A、aB、bC、cD、b或c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是公差為d的等差數(shù)列,?n∈N*,an與an+1的等差中項為n.
(1)求a1與d的值;
(2)設(shè)bn=2n•an,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=k(x-1)+2與曲線x=
1-y2
有且只有一個交點,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l1:mx-y-2=0與直線l2:(2-m)x-y+1=0互相平行,則實數(shù)m的值為( 。
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
1+sin2x-cos2x
1+sin2x+cos2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某單位安排四個人在中秋三天假期值班,要求每人值班一天,每天至少有一人值班,且甲不能在中秋節(jié)當(dāng)天值班,則共有不同的安排方法種數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)是偶函數(shù),且在(0,1)上是單調(diào)遞增的是( 。
A、f(x)=x2+2x
B、f(x)=cosx
C、f(x)=(
1
2
-|x|
D、f(x)=-log
1
2
x

查看答案和解析>>

同步練習(xí)冊答案